These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 23607706)
1. Crystal structure of the CN-hydrolase SA0302 from the pathogenic bacterium Staphylococcus aureus belonging to the Nit and NitFhit Branch of the nitrilase superfamily. Gordon RD; Qiu W; Romanov V; Lam K; Soloveychik M; Benetteraj D; Battaile KP; Chirgadze YN; Pai EF; Chirgadze NY J Biomol Struct Dyn; 2013 Oct; 31(10):1057-65. PubMed ID: 23607706 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of a putative CN hydrolase from yeast. Kumaran D; Eswaramoorthy S; Gerchman SE; Kycia H; Studier FW; Swaminathan S Proteins; 2003 Aug; 52(2):283-91. PubMed ID: 12833551 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Pace HC; Hodawadekar SC; Draganescu A; Huang J; Bieganowski P; Pekarsky Y; Croce CM; Brenner C Curr Biol; 2000 Jul 27-Aug 10; 10(15):907-17. PubMed ID: 10959838 [TBL] [Abstract][Full Text] [Related]
4. Catalysis in the nitrilase superfamily. Brenner C Curr Opin Struct Biol; 2002 Dec; 12(6):775-82. PubMed ID: 12504683 [TBL] [Abstract][Full Text] [Related]
5. The structure of SAV1646 from Staphylococcus aureus belonging to a new `ribosome-associated' subfamily of bacterial proteins. Chirgadze YN; Clarke TE; Romanov V; Kisselman G; Wu-Brown J; Soloveychik M; Chan TS; Gordon RD; Battaile KP; Pai EF; Chirgadze NY Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):332-7. PubMed ID: 25664743 [TBL] [Abstract][Full Text] [Related]
6. Structure and kinetics of phosphonopyruvate hydrolase from Variovorax sp. Pal2: new insight into the divergence of catalysis within the PEP mutase/isocitrate lyase superfamily. Chen CC; Han Y; Niu W; Kulakova AN; Howard A; Quinn JP; Dunaway-Mariano D; Herzberg O Biochemistry; 2006 Sep; 45(38):11491-504. PubMed ID: 16981709 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the substrate specificity loop of the HAD superfamily cap domain. Lahiri SD; Zhang G; Dai J; Dunaway-Mariano D; Allen KN Biochemistry; 2004 Mar; 43(10):2812-20. PubMed ID: 15005616 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of Staphylococcus aureus Zn-glyoxalase I: new subfamily of glyoxalase I family. Chirgadze YN; Boshkova EA; Battaile KP; Mendes VG; Lam R; Chan TSY; Romanov V; Pai EF; Chirgadze NY J Biomol Struct Dyn; 2018 Feb; 36(2):376-386. PubMed ID: 28034013 [TBL] [Abstract][Full Text] [Related]
11. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily. Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258 [TBL] [Abstract][Full Text] [Related]
12. Structures of enzyme-intermediate complexes of yeast Nit2: insights into its catalytic mechanism and different substrate specificity compared with mammalian Nit2. Liu H; Gao Y; Zhang M; Qiu X; Cooper AJ; Niu L; Teng M Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1470-81. PubMed ID: 23897470 [TBL] [Abstract][Full Text] [Related]
13. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Morais MC; Zhang W; Baker AS; Zhang G; Dunaway-Mariano D; Allen KN Biochemistry; 2000 Aug; 39(34):10385-96. PubMed ID: 10956028 [TBL] [Abstract][Full Text] [Related]
14. A new family of carbon-nitrogen hydrolases. Bork P; Koonin EV Protein Sci; 1994 Aug; 3(8):1344-6. PubMed ID: 7987228 [TBL] [Abstract][Full Text] [Related]
15. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118 [TBL] [Abstract][Full Text] [Related]
16. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Kiziak C; Klein J; Stolz A Protein Eng Des Sel; 2007 Aug; 20(8):385-96. PubMed ID: 17693456 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of Staphylococcus aureus peptidyl-tRNA hydrolase at a 2.25 Å resolution. Zhang F; Song Y; Niu L; Teng M; Li X Acta Biochim Biophys Sin (Shanghai); 2015 Dec; 47(12):1005-10. PubMed ID: 26508479 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure of XC1258 from Xanthomonas campestris: a putative procaryotic Nit protein with an arsenic adduct in the active site. Chin KH; Tsai YD; Chan NL; Huang KF; Wang AH; Chou SH Proteins; 2007 Nov; 69(3):665-71. PubMed ID: 17640068 [No Abstract] [Full Text] [Related]
19. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
20. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity. Novo C; Farnaud S; Tata R; Clemente A; Brown PR Biochem J; 2002 Aug; 365(Pt 3):731-8. PubMed ID: 11955282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]