BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 23607706)

  • 1. Crystal structure of the CN-hydrolase SA0302 from the pathogenic bacterium Staphylococcus aureus belonging to the Nit and NitFhit Branch of the nitrilase superfamily.
    Gordon RD; Qiu W; Romanov V; Lam K; Soloveychik M; Benetteraj D; Battaile KP; Chirgadze YN; Pai EF; Chirgadze NY
    J Biomol Struct Dyn; 2013 Oct; 31(10):1057-65. PubMed ID: 23607706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a putative CN hydrolase from yeast.
    Kumaran D; Eswaramoorthy S; Gerchman SE; Kycia H; Studier FW; Swaminathan S
    Proteins; 2003 Aug; 52(2):283-91. PubMed ID: 12833551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers.
    Pace HC; Hodawadekar SC; Draganescu A; Huang J; Bieganowski P; Pekarsky Y; Croce CM; Brenner C
    Curr Biol; 2000 Jul 27-Aug 10; 10(15):907-17. PubMed ID: 10959838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalysis in the nitrilase superfamily.
    Brenner C
    Curr Opin Struct Biol; 2002 Dec; 12(6):775-82. PubMed ID: 12504683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of SAV1646 from Staphylococcus aureus belonging to a new `ribosome-associated' subfamily of bacterial proteins.
    Chirgadze YN; Clarke TE; Romanov V; Kisselman G; Wu-Brown J; Soloveychik M; Chan TS; Gordon RD; Battaile KP; Pai EF; Chirgadze NY
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):332-7. PubMed ID: 25664743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and kinetics of phosphonopyruvate hydrolase from Variovorax sp. Pal2: new insight into the divergence of catalysis within the PEP mutase/isocitrate lyase superfamily.
    Chen CC; Han Y; Niu W; Kulakova AN; Howard A; Quinn JP; Dunaway-Mariano D; Herzberg O
    Biochemistry; 2006 Sep; 45(38):11491-504. PubMed ID: 16981709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the substrate specificity loop of the HAD superfamily cap domain.
    Lahiri SD; Zhang G; Dai J; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 Mar; 43(10):2812-20. PubMed ID: 15005616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural comparison of Ntn-hydrolases.
    Oinonen C; Rouvinen J
    Protein Sci; 2000 Dec; 9(12):2329-37. PubMed ID: 11206054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of Staphylococcus aureus Zn-glyoxalase I: new subfamily of glyoxalase I family.
    Chirgadze YN; Boshkova EA; Battaile KP; Mendes VG; Lam R; Chan TSY; Romanov V; Pai EF; Chirgadze NY
    J Biomol Struct Dyn; 2018 Feb; 36(2):376-386. PubMed ID: 28034013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily.
    Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of enzyme-intermediate complexes of yeast Nit2: insights into its catalytic mechanism and different substrate specificity compared with mammalian Nit2.
    Liu H; Gao Y; Zhang M; Qiu X; Cooper AJ; Niu L; Teng M
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1470-81. PubMed ID: 23897470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily.
    Morais MC; Zhang W; Baker AS; Zhang G; Dunaway-Mariano D; Allen KN
    Biochemistry; 2000 Aug; 39(34):10385-96. PubMed ID: 10956028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new family of carbon-nitrogen hydrolases.
    Bork P; Koonin EV
    Protein Sci; 1994 Aug; 3(8):1344-6. PubMed ID: 7987228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Kiziak C; Klein J; Stolz A
    Protein Eng Des Sel; 2007 Aug; 20(8):385-96. PubMed ID: 17693456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Staphylococcus aureus peptidyl-tRNA hydrolase at a 2.25 Å resolution.
    Zhang F; Song Y; Niu L; Teng M; Li X
    Acta Biochim Biophys Sin (Shanghai); 2015 Dec; 47(12):1005-10. PubMed ID: 26508479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of XC1258 from Xanthomonas campestris: a putative procaryotic Nit protein with an arsenic adduct in the active site.
    Chin KH; Tsai YD; Chan NL; Huang KF; Wang AH; Chou SH
    Proteins; 2007 Nov; 69(3):665-71. PubMed ID: 17640068
    [No Abstract]   [Full Text] [Related]  

  • 19. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity.
    Novo C; Farnaud S; Tata R; Clemente A; Brown PR
    Biochem J; 2002 Aug; 365(Pt 3):731-8. PubMed ID: 11955282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.