These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 236078)

  • 1. Structural studies of staphylococcal protease. I. Spin labelling of the active site and a comparison with other proteases.
    Dugas H; Gaudet F
    Can J Biochem; 1975 Feb; 53(2):155-63. PubMed ID: 236078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the active sites of atropinesterase and some serine proteases by spin-labeling.
    van der Drift AC; Moes GW; van der Drift E; Rousseeuw BA
    Biochemistry; 1985 Sep; 24(20):5333-42. PubMed ID: 3000432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural studies of staphylococcal protease. III. Binding of anions to the spin-labeled enzyme.
    Dugas H; Gaudet F; Leduc P
    Can J Biochem; 1978 Jan; 56(1):7-12. PubMed ID: 222406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron paramagnetic resonance studies on spin-labelling of pepsin: effects of temperature, pH and urea on its conformation.
    Aoshima H; Naito A; Hatano H
    Int J Pept Protein Res; 1976; 8(2):131-9. PubMed ID: 5380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active site structure and stability of the thiol protease papain studied by electron paramagnetic resonance employing a methanethiosulfonate spin label.
    Butterfield DA; Lee J
    Arch Biochem Biophys; 1994 Apr; 310(1):167-71. PubMed ID: 8161201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatility of oxazolidine spin labels--a model study with acyl-alpha-chymotrypsin.
    Hsia JC; Panthananickal A
    Can J Biochem; 1976 Aug; 54(8):704-6. PubMed ID: 182343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific spin-labeling at trypsin active site. Application of 'inverse substrate' to the structural analysis of the active site.
    Fujioka T; Tanizawa K; Kanaoka Y
    Biochim Biophys Acta; 1980 Mar; 612(1):205-12. PubMed ID: 6244849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent heat stabilization of proteases associated with multiheaded inhibitors. Complexes of chymotrypsin, subtilisin and trypsin with chicken ovoinhibitor and with lima bean protease inhibitor.
    Zahnley JC
    Biochim Biophys Acta; 1980; 613(1):178-90. PubMed ID: 6990988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of spin-labeled serine enzymes: acetylcholinesterase, trypsin, -chymotrypsin, elastase, and subtilisin.
    Morrisett JD; Broomfield CA
    J Biol Chem; 1972 Nov; 247(22):7224-31. PubMed ID: 4344643
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparison of the active-site conformations of bovine alpha-thrombin and meizothrombin(desF1) by electron spin resonance.
    Boxrud PD; Berliner LJ
    J Protein Chem; 1996 Feb; 15(2):231-42. PubMed ID: 8924207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESR probing of macromolecules: spin-labeling of the active sites of the proteolytic serine enzymes.
    Hsia JC; Kosman DJ; Piette LH
    Arch Biochem Biophys; 1972 Apr; 149(2):441-51. PubMed ID: 4353583
    [No Abstract]   [Full Text] [Related]  

  • 12. The primary structure of staphylococcal protease.
    Drapeau GR
    Can J Biochem; 1978 Jun; 56(6):534-44. PubMed ID: 96922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elementary processes in the interaction of serine protease with a possible transition state analog. Subtillisin-benzeneboronic acid system.
    Nakatani H; Uehara Y; Hiromi K
    J Biochem; 1975 Sep; 78(3):611-6. PubMed ID: 5414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexibility in the specificity site of serine proteases.
    Hinman LM; Coan CR; Deranleau DA
    Biochemistry; 1976 May; 15(10):2212-9. PubMed ID: 945068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant chymotrypsin inhibitor 2: expression, kinetic analysis of inhibition with alpha-chymotrypsin and wild-type and mutant subtilisin BPN', and protein engineering to investigate inhibitory specificity and mechanism.
    Longstaff C; Campbell AF; Fersht AR
    Biochemistry; 1990 Aug; 29(31):7339-47. PubMed ID: 2207109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ESR study of free and immobilized elastase.
    Dimicoli JL; Nakache M; Lhoste JM
    Biochim Biophys Acta; 1979 Dec; 571(2):294-304. PubMed ID: 228732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lid opening and unfolding in human pancreatic lipase at low pH revealed by site-directed spin labeling EPR and FTIR spectroscopy.
    Ranaldi S; Belle V; Woudstra M; Rodriguez J; Guigliarelli B; Sturgis J; Carriere F; Fournel A
    Biochemistry; 2009 Jan; 48(3):630-8. PubMed ID: 19113953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds.
    Houmard J; Drapeau GR
    Proc Natl Acad Sci U S A; 1972 Dec; 69(12):3506-9. PubMed ID: 4509307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of the electron spin resonance spectra of nitroxide-maleimide-labelled proteins and the use of this technique in the study of albumin and biomembranes.
    Benga G; Strach SJ
    Biochim Biophys Acta; 1975 Jul; 400(1):69-79. PubMed ID: 238657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin label and lanthanide binding sites on glyceraldehyde-3-phosphate dehydrogenase.
    Dwek RA; Levy HR; Radda GK; Seeley PJ
    Biochim Biophys Acta; 1975 Jan; 377(1):26-33. PubMed ID: 164224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.