These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 2360799)
1. Phosphorus magnetic resonance spectroscopy of patients with mitochondrial cytopathies demonstrates decreased levels of brain phosphocreatine. Eleff SM; Barker PB; Blackband SJ; Chatham JC; Lutz NW; Johns DR; Bryan RN Ann Neurol; 1990 Jun; 27(6):626-30. PubMed ID: 2360799 [TBL] [Abstract][Full Text] [Related]
2. Coenzyme Q10 improves mitochondrial respiration in patients with mitochondrial cytopathies. An in vivo study on brain and skeletal muscle by phosphorous magnetic resonance spectroscopy. Barbiroli B; Frassineti C; Martinelli P; Iotti S; Lodi R; Cortelli P; Montagna P Cell Mol Biol (Noisy-le-grand); 1997 Jul; 43(5):741-9. PubMed ID: 9298596 [TBL] [Abstract][Full Text] [Related]
3. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Arnold DL; Taylor DJ; Radda GK Ann Neurol; 1985 Aug; 18(2):189-96. PubMed ID: 4037759 [TBL] [Abstract][Full Text] [Related]
4. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study. Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696 [TBL] [Abstract][Full Text] [Related]
5. Defective brain energy metabolism shown by in vivo 31P MR spectroscopy in 28 patients with mitochondrial cytopathies. Barbiroli B; Montagna P; Martinelli P; Lodi R; Iotti S; Cortelli P; Funicello R; Zaniol P J Cereb Blood Flow Metab; 1993 May; 13(3):469-74. PubMed ID: 8478405 [TBL] [Abstract][Full Text] [Related]
6. Reduced mitochondrial adenosine triphosphate synthesis in skeletal muscle in patients with Child-Pugh class B and C cirrhosis. Jacobsen EB; Hamberg O; Quistorff B; Ott P Hepatology; 2001 Jul; 34(1):7-12. PubMed ID: 11431727 [TBL] [Abstract][Full Text] [Related]
7. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. Kemp GJ; Meyerspeer M; Moser E NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042 [TBL] [Abstract][Full Text] [Related]
8. Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy. Lodi R; Schapira AH; Manners D; Styles P; Wood NW; Taylor DJ; Warner TT Ann Neurol; 2000 Jul; 48(1):72-6. PubMed ID: 10894218 [TBL] [Abstract][Full Text] [Related]
9. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy. Kemp GJ; Sanderson AL; Thompson CH; Radda GK NMR Biomed; 1996 Sep; 9(6):261-70. PubMed ID: 9073304 [TBL] [Abstract][Full Text] [Related]
10. Evidence for mitochondrial dysfunction in patients with alternating hemiplegia of childhood. Arnold DL; Silver K; Andermann F Ann Neurol; 1993 Jun; 33(6):604-7. PubMed ID: 8498840 [TBL] [Abstract][Full Text] [Related]
11. In vivo magnetic resonance spectroscopy of brain and muscle in a type of mitochondrial encephalomyopathy (MERRF). Matthews PM; Berkovic SF; Shoubridge EA; Andermann F; Karpati G; Carpenter S; Arnold DL Ann Neurol; 1991 Apr; 29(4):435-8. PubMed ID: 1929212 [TBL] [Abstract][Full Text] [Related]
12. Magnetic resonance spectroscopy in patients with MELAS. Möller HE; Kurlemann G; Pützler M; Wiedermann D; Hilbich T; Fiedler B J Neurol Sci; 2005 Mar; 229-230():131-9. PubMed ID: 15760631 [TBL] [Abstract][Full Text] [Related]
13. Metabolic abnormalities in skeletal muscle of patients receiving zidovudine therapy observed by 31P in vivo magnetic resonance spectroscopy. Sinnwell TM; Sivakumar K; Soueidan S; Jay C; Frank JA; McLaughlin AC; Dalakas MC J Clin Invest; 1995 Jul; 96(1):126-31. PubMed ID: 7615782 [TBL] [Abstract][Full Text] [Related]
14. Effect of chronic uraemia on skeletal muscle metabolism in man. Thompson CH; Kemp GJ; Taylor DJ; Ledingham JG; Radda GK; Rajagopalan B Nephrol Dial Transplant; 1993; 8(3):218-22. PubMed ID: 8385287 [TBL] [Abstract][Full Text] [Related]
15. Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study. Rana P; Varshney A; Devi MM; Kumar P; Khushu S Indian J Biochem Biophys; 2008 Aug; 45(4):263-8. PubMed ID: 18788477 [TBL] [Abstract][Full Text] [Related]
16. Consequences of reduced cerebral blood flow in brain development. II. Retardation of neurological outcome and phosphorus metabolism. Nioka S; Zaman A; Nagy D; Miller B; Finlay BL; Chance B Exp Neurol; 1993 Dec; 124(2):343-50. PubMed ID: 8287931 [TBL] [Abstract][Full Text] [Related]
17. Brain death-induced alterations in myocardial workload and high-energy phosphates: a phosphorus 31 magnetic resonance spectroscopy study in the cat. Brandon Bravo Bruinsma GJ; Nederhoff MG; te Boekhorst BC; Bredée JJ; Ruigrok TJ; van Echteld CJ J Heart Lung Transplant; 1998 Oct; 17(10):984-90. PubMed ID: 9811406 [TBL] [Abstract][Full Text] [Related]
18. Selective depletion of tumor ATP by 2-deoxyglucose and insulin, detected by 31P magnetic resonance spectroscopy. Karczmar GS; Arbeit JM; Toy BJ; Speder A; Weiner MW Cancer Res; 1992 Jan; 52(1):71-6. PubMed ID: 1727388 [TBL] [Abstract][Full Text] [Related]
19. Skeletal muscle mitochondrial dysfunction in alternating hemiplegia of childhood. Kemp GJ; Taylor DJ; Barnes PR; Wilson J; Radda GK Ann Neurol; 1995 Oct; 38(4):681-4. PubMed ID: 7574469 [TBL] [Abstract][Full Text] [Related]
20. Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson's disease. Hattingen E; Magerkurth J; Pilatus U; Mozer A; Seifried C; Steinmetz H; Zanella F; Hilker R Brain; 2009 Dec; 132(Pt 12):3285-97. PubMed ID: 19952056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]