These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23608193)

  • 1. Is structural equation modeling advantageous for the genetic improvement of multiple traits?
    Valente BD; Rosa GJ; Gianola D; Wu XL; Weigel K
    Genetics; 2013 Jul; 194(3):561-72. PubMed ID: 23608193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of breeding values for production traits in turkeys (Meleagris gallopavo) using recursive models with or without genomics.
    Abdalla EA; Wood BJ; Baes CF
    Genet Sel Evol; 2021 Feb; 53(1):16. PubMed ID: 33593272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed effects structural equation models and phenotypic causal networks.
    Valente BD; de Magalhães Rosa GJ
    Methods Mol Biol; 2013; 1019():449-64. PubMed ID: 23756905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring phenotypic causal structures among meat quality traits and the application of a structural equation model in Japanese Black cattle.
    Inoue K; Valente BD; Shoji N; Honda T; Oyama K; Rosa GJ
    J Anim Sci; 2016 Oct; 94(10):4133-4142. PubMed ID: 27898842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of causal networks on the structure and stability of resource allocation trait correlations.
    Gove RP; Chen W; Zweber NB; Erwin R; Rychtář J; Remington DL
    J Theor Biol; 2012 Jan; 293():1-14. PubMed ID: 22004994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invited review: Recursive models in animal breeding: Interpretation, limitations, and extensions.
    Varona L; González-Recio O
    J Dairy Sci; 2023 Apr; 106(4):2198-2212. PubMed ID: 36870846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditioning on the causal network prevents indirect response to selection.
    Bonamy M; Fernández ME; Giovambattista G; Munilla S
    J Anim Breed Genet; 2024 Jan; 141(1):42-51. PubMed ID: 37724760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring causal phenotype networks using structural equation models.
    Rosa GJ; Valente BD; de los Campos G; Wu XL; Gianola D; Silva MA
    Genet Sel Evol; 2011 Feb; 43(1):6. PubMed ID: 21310061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster.
    Edwards SM; Sørensen IF; Sarup P; Mackay TF; Sørensen P
    Genetics; 2016 Aug; 203(4):1871-83. PubMed ID: 27235308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional genetics of intraspecific ecological interactions in Arabidopsis thaliana.
    Wolf JB; Mutic JJ; Kover PX
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1569):1358-67. PubMed ID: 21444310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of genetic and environmental factors on trait network predictions from quantitative trait locus data.
    Remington DL
    Genetics; 2009 Mar; 181(3):1087-99. PubMed ID: 19139147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction accuracy of direct and indirect approaches, and their relationships with prediction ability of calibration models.
    Belay TK; Dagnachew BS; Boison SA; Ådnøy T
    J Dairy Sci; 2018 Jul; 101(7):6174-6189. PubMed ID: 29605329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Bayesian causal inference and structural equation model to animal breeding.
    Inoue K
    Anim Sci J; 2020; 91(1):e13359. PubMed ID: 32219948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Including Phenotypic Causal Networks in Genome-Wide Association Studies Using Mixed Effects Structural Equation Models.
    Momen M; Ayatollahi Mehrgardi A; Amiri Roudbar M; Kranis A; Mercuri Pinto R; Valente BD; Morota G; Rosa GJM; Gianola D
    Front Genet; 2018; 9():455. PubMed ID: 30356716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Searching for recursive causal structures in multivariate quantitative genetics mixed models.
    Valente BD; Rosa GJ; de Los Campos G; Gianola D; Silva MA
    Genetics; 2010 Jun; 185(2):633-44. PubMed ID: 20351220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction.
    He D; Kuhn D; Parida L
    Bioinformatics; 2016 Jun; 32(12):i37-i43. PubMed ID: 27307640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide prediction of traits with different genetic architecture through efficient variable selection.
    Wimmer V; Lehermeier C; Albrecht T; Auinger HJ; Wang Y; Schön CC
    Genetics; 2013 Oct; 195(2):573-87. PubMed ID: 23934883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new statistical framework for genetic pleiotropic analysis of high dimensional phenotype data.
    Wang P; Rahman M; Jin L; Xiong M
    BMC Genomics; 2016 Nov; 17(1):881. PubMed ID: 27821073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling QTL for complex traits: detection and context for plant breeding.
    Cooper M; van Eeuwijk FA; Hammer GL; Podlich DW; Messina C
    Curr Opin Plant Biol; 2009 Apr; 12(2):231-40. PubMed ID: 19282235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian mixture structural equation modelling in multiple-trait QTL mapping.
    Mi X; Eskridge K; Wang D; Baenziger PS; Campbell BT; Gill KS; Dweikat I
    Genet Res (Camb); 2010 Jun; 92(3):239-50. PubMed ID: 20667167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.