BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23608482)

  • 1. The circadian Per1 and Per2 genes influence alcohol intake, reinforcement, and blood alcohol levels.
    Gamsby JJ; Templeton EL; Bonvini LA; Wang W; Loros JJ; Dunlap JC; Green AI; Gulick D
    Behav Brain Res; 2013 Jul; 249():15-21. PubMed ID: 23608482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol self-administration and reinstatement of ethanol-seeking behavior in Per1(Brdm1) mutant mice.
    Zghoul T; Abarca C; Sanchis-Segura C; Albrecht U; Schumann G; Spanagel R
    Psychopharmacology (Berl); 2007 Jan; 190(1):13-9. PubMed ID: 17051414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian and acamprosate modulation of elevated ethanol drinking in mPer2 clock gene mutant mice.
    Brager AJ; Prosser RA; Glass JD
    Chronobiol Int; 2011 Oct; 28(8):664-72. PubMed ID: 21929298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic self-administration of alcohol results in elevated ΔFosB: comparison of hybrid mice with distinct drinking patterns.
    Ozburn AR; Mayfield RD; Ponomarev I; Jones TA; Blednov YA; Harris RA
    BMC Neurosci; 2012 Oct; 13():130. PubMed ID: 23102405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosinergic regulation of striatal clock gene expression and ethanol intake during constant light.
    Ruby CL; Vadnie CA; Hinton DJ; Abulseoud OA; Walker DL; O'Connor KM; Noterman MF; Choi DS
    Neuropsychopharmacology; 2014 Sep; 39(10):2432-40. PubMed ID: 24755889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex Differences in the Reward-Enhancing Effects of Nicotine on Ethanol Reinforcement: A Reinforcer Demand Analysis.
    Barrett ST; Thompson BM; Emory JR; Larsen CE; Pittenger ST; Harris EN; Bevins RA
    Nicotine Tob Res; 2020 Feb; 22(2):238-247. PubMed ID: 30982885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus.
    Filiano AN; Millender-Swain T; Johnson R; Young ME; Gamble KL; Bailey SM
    PLoS One; 2013; 8(8):e71684. PubMed ID: 23951220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavioral differences between C57BL/6J x FVB/NJ and C57BL/6J x NZB/B1NJ F1 hybrid mice: relation to control of ethanol intake.
    Ozburn AR; Harris RA; Blednov YA
    Behav Genet; 2010 Jul; 40(4):551-63. PubMed ID: 20364436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic voluntary alcohol consumption results in tolerance to sedative/hypnotic and hypothermic effects of alcohol in hybrid mice.
    Ozburn AR; Harris RA; Blednov YA
    Pharmacol Biochem Behav; 2013 Mar; 104():33-9. PubMed ID: 23313769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased ethanol intake in prodynorphin knockout mice is associated to changes in opioid receptor function and dopamine transmission.
    Femenía T; Manzanares J
    Addict Biol; 2012 Mar; 17(2):322-37. PubMed ID: 21966993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the circadian rhythm gene period 1 (per1) on psychosocial stress-induced alcohol drinking.
    Dong L; Bilbao A; Laucht M; Henriksson R; Yakovleva T; Ridinger M; Desrivieres S; Clarke TK; Lourdusamy A; Smolka MN; Cichon S; Blomeyer D; Treutlein J; Perreau-Lenz S; Witt S; Leonardi-Essmann F; Wodarz N; Zill P; Soyka M; Albrecht U; Rietschel M; Lathrop M; Bakalkin G; Spanagel R; Schumann G
    Am J Psychiatry; 2011 Oct; 168(10):1090-8. PubMed ID: 21828288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of alcohol-preferring and nonpreferring selectively bred rat lines. II. Operant self-administration in a continuous-access situation.
    Files FJ; Samson HH; Denning CE; Marvin S
    Alcohol Clin Exp Res; 1998 Dec; 22(9):2147-58. PubMed ID: 9884163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between ethanol's acute locomotor effects and ethanol self-administration in male Long-Evans rats.
    Chappell AM; Weiner JL
    Alcohol Clin Exp Res; 2008 Dec; 32(12):2088-99. PubMed ID: 18828804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcohol consumption and the body's biological clock.
    Spanagel R; Rosenwasser AM; Schumann G; Sarkar DK
    Alcohol Clin Exp Res; 2005 Aug; 29(8):1550-7. PubMed ID: 16156052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice.
    Wang T; Yang P; Zhan Y; Xia L; Hua Z; Zhang J
    Toxicology; 2013 Dec; 314(2-3):193-201. PubMed ID: 24144995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential concentration-response curves for oral ethanol self-administration in C57BL/6J and BALB/cJ mice.
    Elmer GI; Meisch RA; George FR
    Alcohol; 1987; 4(1):63-8. PubMed ID: 3828066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic ethanol tolerance as a result of free-choice drinking in alcohol-preferring rats of the WHP line.
    Dyr W; Taracha E
    Pharmacol Rep; 2012; 64(1):78-83. PubMed ID: 22580523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol-induced conditioned taste aversion in BXD recombinant inbred mice.
    Risinger FO; Cunningham CL
    Alcohol Clin Exp Res; 1998 Sep; 22(6):1234-44. PubMed ID: 9756038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of ethanol's hedonic effects in mice selectively bred for sensitivity to ethanol-induced hypothermia.
    Cunningham CL; Hallett CL; Niehus DR; Hunter JS; Nouth L; Risinger FO
    Psychopharmacology (Berl); 1991; 105(1):84-92. PubMed ID: 1745716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased ethanol preference and consumption in dopamine transporter female knock-out mice.
    Savelieva KV; Caudle WM; Findlay GS; Caron MG; Miller GW
    Alcohol Clin Exp Res; 2002 Jun; 26(6):758-64. PubMed ID: 12068242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.