These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 23608633)
1. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks. Seirin Lee S; Baker RE; Gaffney EA; White SM J Theor Biol; 2013 Aug; 331():78-90. PubMed ID: 23608633 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of sex determination and transmission ratio distortion in Aedes aegypti. Hoang KP; Teo TM; Ho TX; Le VS Parasit Vectors; 2016 Jan; 9():49. PubMed ID: 26818000 [TBL] [Abstract][Full Text] [Related]
3. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti. Bargielowski I; Kaufmann C; Alphey L; Reiter P; Koella J Vector Borne Zoonotic Dis; 2012 Dec; 12(12):1053-8. PubMed ID: 22835152 [TBL] [Abstract][Full Text] [Related]
4. Late-acting dominant lethal genetic systems and mosquito control. Phuc HK; Andreasen MH; Burton RS; Vass C; Epton MJ; Pape G; Fu G; Condon KC; Scaife S; Donnelly CA; Coleman PG; White-Cooper H; Alphey L BMC Biol; 2007 Mar; 5():11. PubMed ID: 17374148 [TBL] [Abstract][Full Text] [Related]
5. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti. Oléron Evans TP; Bishop SR Math Biosci; 2014 Aug; 254():6-27. PubMed ID: 24929226 [TBL] [Abstract][Full Text] [Related]
6. Genetic control of Aedes aegypti: data-driven modelling to assess the effect of releasing different life stages and the potential for long-term suppression. Winskill P; Harris AF; Morgan SA; Stevenson J; Raduan N; Alphey L; McKemey AR; Donnelly CA Parasit Vectors; 2014 Feb; 7():68. PubMed ID: 24524678 [TBL] [Abstract][Full Text] [Related]
7. Genetically Modified Aedes aegypti to Control Dengue: A Review. Qsim M; Ashfaq UA; Yousaf MZ; Masoud MS; Rasul I; Noor N; Hussain A Crit Rev Eukaryot Gene Expr; 2017; 27(4):331-340. PubMed ID: 29283327 [TBL] [Abstract][Full Text] [Related]
8. Genetic control of mosquitoes: population suppression strategies. Wilke AB; Marrelli MT Rev Inst Med Trop Sao Paulo; 2012; 54(5):287-92. PubMed ID: 22983293 [TBL] [Abstract][Full Text] [Related]
9. [Sterile insect technique: targeted control without insecticide]. Boyer S Med Trop (Mars); 2012 Mar; 72 Spec No():60-2. PubMed ID: 22693930 [TBL] [Abstract][Full Text] [Related]
10. Using bacteria to treat diseases. Caragata EP; Walker T Expert Opin Biol Ther; 2012 Jun; 12(6):701-12. PubMed ID: 22500583 [TBL] [Abstract][Full Text] [Related]
11. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti. Rapley LP; Johnson PH; Williams CR; Silcock RM; Larkman M; Long SA; Russell RC; Ritchie SA Med Vet Entomol; 2009 Dec; 23(4):303-16. PubMed ID: 19941596 [TBL] [Abstract][Full Text] [Related]
12. Female-specific flightless phenotype for mosquito control. Fu G; Lees RS; Nimmo D; Aw D; Jin L; Gray P; Berendonk TU; White-Cooper H; Scaife S; Kim Phuc H; Marinotti O; Jasinskiene N; James AA; Alphey L Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4550-4. PubMed ID: 20176967 [TBL] [Abstract][Full Text] [Related]
13. Modelling releases of sterile mosquitoes with different strategies. Li J; Yuan Z J Biol Dyn; 2015; 9():1-14. PubMed ID: 25377433 [TBL] [Abstract][Full Text] [Related]
14. Mass production of genetically modified Aedes aegypti for field releases in Brazil. Carvalho DO; Nimmo D; Naish N; McKemey AR; Gray P; Wilke AB; Marrelli MT; Virginio JF; Alphey L; Capurro ML J Vis Exp; 2014 Jan; (83):e3579. PubMed ID: 24430003 [TBL] [Abstract][Full Text] [Related]
15. Oral ingestion of transgenic RIDL Ae. aegypti larvae has no negative effect on two predator Toxorhynchites species. Nordin O; Donald W; Ming WH; Ney TG; Mohamed KA; Halim NA; Winskill P; Hadi AA; Muhammad ZS; Lacroix R; Scaife S; McKemey AR; Beech C; Shahnaz M; Alphey L; Nimmo DD; Nazni WA; Lee HL PLoS One; 2013; 8(3):e58805. PubMed ID: 23527029 [TBL] [Abstract][Full Text] [Related]
16. Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases. Carvalho DO; Costa-da-Silva AL; Lees RS; Capurro ML Acta Trop; 2014 Apr; 132 Suppl():S170-7. PubMed ID: 24513036 [TBL] [Abstract][Full Text] [Related]
17. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Whyard S; Erdelyan CN; Partridge AL; Singh AD; Beebe NW; Capina R Parasit Vectors; 2015 Feb; 8():96. PubMed ID: 25880645 [TBL] [Abstract][Full Text] [Related]
18. The ecology of genetically modified mosquitoes. Scott TW; Takken W; Knols BG; Boëte C Science; 2002 Oct; 298(5591):117-9. PubMed ID: 12364785 [TBL] [Abstract][Full Text] [Related]
19. Elimination of dengue by community programs using Mesocyclops(Copepoda) against Aedes aegypti in central Vietnam. Vu SN; Nguyen TY; Tran VP; Truong UN; Le QM; Le VL; Le TN; Bektas A; Briscombe A; Aaskov JG; Ryan PA; Kay BH Am J Trop Med Hyg; 2005 Jan; 72(1):67-73. PubMed ID: 15728869 [TBL] [Abstract][Full Text] [Related]
20. Increased efficiency in the second-hand tire trade provides opportunity for dengue control. Pliego Pliego E; Velázquez-Castro J; Eichhorn MP; Fraguela Collar A J Theor Biol; 2018 Jan; 437():126-136. PubMed ID: 29079324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]