These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23609096)

  • 1. Catalytic control over supramolecular gel formation.
    Boekhoven J; Poolman JM; Maity C; Li F; van der Mee L; Minkenberg CB; Mendes E; van Esch JH; Eelkema R
    Nat Chem; 2013 May; 5(5):433-7. PubMed ID: 23609096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalysis of Supramolecular Hydrogelation.
    Trausel F; Versluis F; Maity C; Poolman JM; Lovrak M; van Esch JH; Eelkema R
    Acc Chem Res; 2016 Jul; 49(7):1440-7. PubMed ID: 27314682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Supramolecular Gel Formed by Cyclohexane Diamine with Aldehyde Derivative.
    Park JH; Kim MH; Seo ML; Lee JH; Jung JH
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable gelation time and stiffness of low-molecular-weight hydrogels through catalytic control over self-assembly.
    Poolman JM; Boekhoven J; Besselink A; Olive AG; van Esch JH; Eelkema R
    Nat Protoc; 2014 Apr; 9(4):977-88. PubMed ID: 24675737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programming properties of transient hydrogels by an enzymatic reaction.
    Panja S; Boháčová K; Dietrich B; Adams DJ
    Nanoscale; 2020 Jun; 12(24):12840-12848. PubMed ID: 32515773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switchable performance of an L-proline-derived basic catalyst controlled by supramolecular gelation.
    Rodríguez-Llansola F; Escuder B; Miravet JF
    J Am Chem Soc; 2009 Aug; 131(32):11478-84. PubMed ID: 19459635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular gels: using an amide-functionalized imidazolium-based surfactant.
    Cheng N; Kang Q; Xiao J; Du N; Yu L
    J Colloid Interface Sci; 2018 Feb; 511():215-221. PubMed ID: 29028572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Access to Metastable Gel States Using Seeded Self-Assembly of Low-Molecular-Weight Gelators.
    Wang Y; de Kruijff RM; Lovrak M; Guo X; Eelkema R; van Esch JH
    Angew Chem Int Ed Engl; 2019 Mar; 58(12):3800-3803. PubMed ID: 30589169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Low-Molecular-Weight Gelator Composed of Pyrene and Fluorene Moieties for Effective Charge Transfer in Supramolecular Ambidextrous Gel.
    Reddy SMM; Dorishetty P; Augustine G; Deshpande AP; Ayyadurai N; Shanmugam G
    Langmuir; 2017 Nov; 33(47):13504-13514. PubMed ID: 29135262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.
    Qi Z; Schalley CA
    Acc Chem Res; 2014 Jul; 47(7):2222-33. PubMed ID: 24937365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst.
    Maity C; Hendriksen WE; van Esch JH; Eelkema R
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):998-1001. PubMed ID: 25385283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Supramolecular Gels and Catalysis.
    Fang W; Zhang Y; Wu J; Liu C; Zhu H; Tu T
    Chem Asian J; 2018 Apr; 13(7):712-729. PubMed ID: 29377536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical Properties and the Gelation Process of Supramolecular Hydrogels: A Review.
    Karoyo AH; Wilson LD
    Gels; 2017 Jan; 3(1):. PubMed ID: 30920498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular gels with high strength by tuning of calix[4]arene-derived networks.
    Lee JH; Park J; Park JW; Ahn HJ; Jaworski J; Jung JH
    Nat Commun; 2015 Mar; 6():6650. PubMed ID: 25799459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric Study on Supramolecular Gels by Fiber Structure Formation from Low-Molecular-Weight Gelator/Water Mixtures.
    Shimizu K; Abe F; Kishi Y; Kita R; Shinyashiki N; Yagihara S
    Gels; 2023 May; 9(5):. PubMed ID: 37233000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrate-supramolecular gels: Adsorbents for chromium(VI) removal from wastewater.
    Rizzo C; Andrews JL; Steed JW; D'Anna F
    J Colloid Interface Sci; 2019 Jul; 548():184-196. PubMed ID: 31003165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic control over the formation of supramolecular materials.
    Eelkema R; van Esch JH
    Org Biomol Chem; 2014 Sep; 12(33):6292-6. PubMed ID: 25026045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials.
    Yu X; Chen L; Zhang M; Yi T
    Chem Soc Rev; 2014 Aug; 43(15):5346-71. PubMed ID: 24770929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-functionalized oxime hydrogels with tunable mechanical properties and gelation behavior.
    Lin F; Yu J; Tang W; Zheng J; Defante A; Guo K; Wesdemiotis C; Becker ML
    Biomacromolecules; 2013 Oct; 14(10):3749-58. PubMed ID: 24050500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli-Responsive Nucleotide-Amino Acid Hybrid Supramolecular Hydrogels.
    Mulvee M; Vasiljevic N; Mann S; Patil AJ
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.