These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23609156)

  • 1. Substrate-free self-assembled SiOx-core nanodots from alkylalkoxysilane as a multicolor photoluminescence source for intravital imaging.
    Lin PY; Hsieh CW; Kung ML; Hsieh S
    Sci Rep; 2013; 3():1703. PubMed ID: 23609156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic liquid-assisted synthesis of multicolor luminescent silica nanodots and their use as anticounterfeiting ink.
    Zhou L; Zhao A; Wang Z; Chen Z; Ren J; Qu X
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2905-11. PubMed ID: 25581371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible luminescent silicon quantum dots for imaging of cancer cells.
    Erogbogbo F; Yong KT; Roy I; Xu G; Prasad PN; Swihart MT
    ACS Nano; 2008 May; 2(5):873-8. PubMed ID: 19206483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescent CdTe and CdSe semiconductor nanocrystals: preparation, optical properties and applications.
    Wang Y
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1068-91. PubMed ID: 18468108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot synthesis of highly luminescent carbon quantum dots and their nontoxic ingestion by zebrafish for in vivo imaging.
    Huang YF; Zhou X; Zhou R; Zhang H; Kang KB; Zhao M; Peng Y; Wang Q; Zhang HL; Qiu WY
    Chemistry; 2014 May; 20(19):5640-8. PubMed ID: 24677275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism.
    Bao L; Zhang ZL; Tian ZQ; Zhang L; Liu C; Lin Y; Qi B; Pang DW
    Adv Mater; 2011 Dec; 23(48):5801-6. PubMed ID: 22144369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic gold and luminescent silicon nanoplatforms for multimode imaging of cancer cells.
    Erogbogbo F; Liu X; May JL; Narain A; Gladding P; Swihart MT; Prasad PN
    Integr Biol (Camb); 2013 Jan; 5(1):144-50. PubMed ID: 23014624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled growth and luminescence of crystalline Si/SiOx core-shell nanowires.
    Kim S; Kim CO; Shin DH; Hong SH; Kim MC; Kim J; Choi SH; Kim T; Elliman RG; Kim YM
    Nanotechnology; 2010 May; 21(20):205601. PubMed ID: 20413841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecularly Precise, Bright, Photostable, and Biocompatible Cyanine Nanodots as Alternatives to Quantum Dots for Biomedical Applications.
    Yang J; Wang K; Zheng Y; Piao Y; Wang J; Tang J; Shen Y; Zhou Z
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202202128. PubMed ID: 35652391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiconductor quantum dots as contrast agents for whole animal imaging.
    Jiang W; Papa E; Fischer H; Mardyani S; Chan WC
    Trends Biotechnol; 2004 Dec; 22(12):607-9. PubMed ID: 15542145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning.
    Bao L; Liu C; Zhang ZL; Pang DW
    Adv Mater; 2015 Mar; 27(10):1663-7. PubMed ID: 25589141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle fluorescence based technology for biological applications.
    Chen W
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1019-51. PubMed ID: 18468106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence.
    Cheng KY; Anthony R; Kortshagen UR; Holmes RJ
    Nano Lett; 2010 Apr; 10(4):1154-7. PubMed ID: 20337448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High photoluminescence quantum yield of TiO2 nanocrystals prepared using an alcohothermal method.
    Li Y; Song C; Wang Y; Wei Y; Wei Y; Hu Y
    Luminescence; 2007; 22(6):540-5. PubMed ID: 17768709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of surface structures on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence.
    Wu XL; Xiong SJ; Zhu J; Wang J; Shen JC; Chu PK
    Nano Lett; 2009 Dec; 9(12):4053-60. PubMed ID: 19894694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Photoluminescence of nano-SiC annealed by pulse laser].
    Yu W; He J; Sun YT; Han L; Fu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Apr; 25(4):506-8. PubMed ID: 16097671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable 3D arrays of quantum dots: synthesis and luminescence properties.
    Pacifico J; Jasieniak J; Gómez DE; Mulvaney P
    Small; 2006 Feb; 2(2):199-203. PubMed ID: 17193020
    [No Abstract]   [Full Text] [Related]  

  • 18. Luminescent silicon nanoparticles for distinctive tracking of cellular targeting and trafficking.
    Kim GH; Lee G; Kang MH; Kim M; Jin Y; Beck S; Cheon J; Sung J; Joo J
    Faraday Discuss; 2020 Jun; 222(0):304-317. PubMed ID: 32100767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging.
    Rhyner MN; Smith AM; Gao X; Mao H; Yang L; Nie S
    Nanomedicine (Lond); 2006 Aug; 1(2):209-17. PubMed ID: 17716110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra.
    Surrente A; Gallo P; Felici M; Dwir B; Rudra A; Kapon E
    Nanotechnology; 2009 Oct; 20(41):415205. PubMed ID: 19762950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.