BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23609536)

  • 1. An aromatic residue switch in enhancer-dependent bacterial RNA polymerase controls transcription intermediate complex activity.
    Wiesler SC; Weinzierl RO; Buck M
    Nucleic Acids Res; 2013 Jun; 41(11):5874-86. PubMed ID: 23609536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual switch controls bacterial enhancer-dependent transcription.
    Wiesler SC; Burrows PC; Buck M
    Nucleic Acids Res; 2012 Nov; 40(21):10878-92. PubMed ID: 22965125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Single-Molecule Studies of RNA Polymerase-Promoter Open Complex Formation Reveal Substantial Heterogeneity Along the Promoter-Opening Pathway.
    Malinen AM; Bakermans J; Aalto-Setälä E; Blessing M; Bauer DLV; Parilova O; Belogurov GA; Dulin D; Kapanidis AN
    J Mol Biol; 2022 Jan; 434(2):167383. PubMed ID: 34863780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms for activating bacterial RNA polymerase.
    Ghosh T; Bose D; Zhang X
    FEMS Microbiol Rev; 2010 Sep; 34(5):611-27. PubMed ID: 20629756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base flipping in open complex formation at bacterial promoters.
    Karpen ME; deHaseth PL
    Biomolecules; 2015 Apr; 5(2):668-78. PubMed ID: 25927327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise Promoter Melting by Bacterial RNA Polymerase.
    Chen J; Chiu C; Gopalkrishnan S; Chen AY; Olinares PDB; Saecker RM; Winkelman JT; Maloney MF; Chait BT; Ross W; Gourse RL; Campbell EA; Darst SA
    Mol Cell; 2020 Apr; 78(2):275-288.e6. PubMed ID: 32160514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-EM structure of
    Narayanan A; Vago FS; Li K; Qayyum MZ; Yernool D; Jiang W; Murakami KS
    J Biol Chem; 2018 May; 293(19):7367-7375. PubMed ID: 29581236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative parameters of bacterial RNA polymerase open-complex formation, stabilization and disruption on a consensus promoter.
    Bera SC; America PPB; Maatsola S; Seifert M; Ostrofet E; Cnossen J; Spermann M; Papini FS; Depken M; Malinen AM; Dulin D
    Nucleic Acids Res; 2022 Jul; 50(13):7511-7528. PubMed ID: 35819191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a bacterial RNA polymerase holoenzyme open promoter complex.
    Bae B; Feklistov A; Lass-Napiorkowska A; Landick R; Darst SA
    Elife; 2015 Sep; 4():. PubMed ID: 26349032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex.
    Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL
    J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection.
    Vvedenskaya IO; Vahedian-Movahed H; Zhang Y; Taylor DM; Ebright RH; Nickels BE
    Proc Natl Acad Sci U S A; 2016 May; 113(21):E2899-905. PubMed ID: 27162333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of variability in transcription start site selection.
    Yu L; Winkelman JT; Pukhrambam C; Strick TR; Nickels BE; Ebright RH
    Elife; 2017 Nov; 6():. PubMed ID: 29168694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperativity and interaction energy threshold effects in recognition of the -10 promoter element by bacterial RNA polymerase.
    Mekler V; Severinov K
    Nucleic Acids Res; 2013 Aug; 41(15):7276-85. PubMed ID: 23771146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation.
    Burrows PC; Wigneshweraraj SR; Buck M
    J Mol Biol; 2008 Jan; 375(1):43-58. PubMed ID: 18005983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching.
    Revyakin A; Liu C; Ebright RH; Strick TR
    Science; 2006 Nov; 314(5802):1139-43. PubMed ID: 17110577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sigma 54 DNA-binding domain includes a determinant of enhancer responsiveness.
    Chaney M; Buck M
    Mol Microbiol; 1999 Sep; 33(6):1200-9. PubMed ID: 10510234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.
    Mekler V; Minakhin L; Borukhov S; Mustaev A; Severinov K
    J Mol Biol; 2014 Dec; 426(24):3973-3984. PubMed ID: 25311862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heparin and heparan sulphate on open promoter complex formation for a simple tandem gene model using ex situ atomic force microscopy.
    Chammas O; Bonass WA; Thomson NH
    Methods; 2017 May; 120():91-102. PubMed ID: 28434996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus subtilis δ Factor Functions as a Transcriptional Regulator by Facilitating the Open Complex Formation.
    Prajapati RK; Sengupta S; Rudra P; Mukhopadhyay J
    J Biol Chem; 2016 Jan; 291(3):1064-75. PubMed ID: 26546673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequences in sigma(54) region I required for binding to early melted DNA and their involvement in sigma-DNA isomerisation.
    Gallegos MT; Buck M
    J Mol Biol; 2000 Apr; 297(4):849-59. PubMed ID: 10736222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.