BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23609540)

  • 1. Crystal structures of Escherichia coli exonuclease I in complex with single-stranded DNA provide insights into the mechanism of processive digestion.
    Korada SK; Johns TD; Smith CE; Jones ND; McCabe KA; Bell CE
    Nucleic Acids Res; 2013 Jun; 41(11):5887-97. PubMed ID: 23609540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.
    Brautigam CA; Sun S; Piccirilli JA; Steitz TA
    Biochemistry; 1999 Jan; 38(2):696-704. PubMed ID: 9888810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of Escherichia coli exonuclease I in complex with thymidine 5'-monophosphate.
    Busam RD
    Acta Crystallogr D Biol Crystallogr; 2008 Feb; 64(Pt 2):206-10. PubMed ID: 18219121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis.
    Yang W; Chen WY; Wang H; Ho JW; Huang JD; Woo PC; Lau SK; Yuen KY; Zhang Q; Zhou W; Bartlam M; Watt RM; Rao Z
    Nucleic Acids Res; 2011 Dec; 39(22):9803-19. PubMed ID: 21893587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orchestration of Haemophilus influenzae RecJ exonuclease by interaction with single-stranded DNA-binding protein.
    Sharma R; Rao DN
    J Mol Biol; 2009 Feb; 385(5):1375-96. PubMed ID: 19094995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of Escherichia coli exonuclease I suggests how processivity is achieved.
    Breyer WA; Matthews BW
    Nat Struct Biol; 2000 Dec; 7(12):1125-8. PubMed ID: 11101894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I.
    Lu D; Keck JL
    Proc Natl Acad Sci U S A; 2008 Jul; 105(27):9169-74. PubMed ID: 18591666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of RecJ exonuclease defines its specificity for single-stranded DNA.
    Wakamatsu T; Kitamura Y; Kotera Y; Nakagawa N; Kuramitsu S; Masui R
    J Biol Chem; 2010 Mar; 285(13):9762-9769. PubMed ID: 20129927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for DNA 5´-end resection by RecJ.
    Cheng K; Xu H; Chen X; Wang L; Tian B; Zhao Y; Hua Y
    Elife; 2016 Apr; 5():e14294. PubMed ID: 27058167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide inhibitors identify roles for SSB C-terminal residues in SSB/exonuclease I complex formation.
    Lu D; Windsor MA; Gellman SH; Keck JL
    Biochemistry; 2009 Jul; 48(29):6764-71. PubMed ID: 19527069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of TatD exonuclease in DNA repair.
    Chen YC; Li CL; Hsiao YY; Duh Y; Yuan HS
    Nucleic Acids Res; 2014; 42(16):10776-85. PubMed ID: 25114049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Structure-Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers.
    Pan X; Smith CE; Zhang J; McCabe KA; Fu J; Bell CE
    Biochemistry; 2015 Oct; 54(39):6139-48. PubMed ID: 26361255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates.
    Brautigam CA; Steitz TA
    J Mol Biol; 1998 Mar; 277(2):363-77. PubMed ID: 9514742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Exonuclease I stimulation by the single-stranded DNA-binding protein.
    Lu D; Myers AR; George NP; Keck JL
    Nucleic Acids Res; 2011 Aug; 39(15):6536-45. PubMed ID: 21572106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the Redβ C-terminal domain in complex with λ Exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein.
    Caldwell BJ; Zakharova E; Filsinger GT; Wannier TM; Hempfling JP; Chun-Der L; Pei D; Church GM; Bell CE
    Nucleic Acids Res; 2019 Feb; 47(4):1950-1963. PubMed ID: 30624736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toroidal structure of lambda-exonuclease.
    Kovall R; Matthews BW
    Science; 1997 Sep; 277(5333):1824-7. PubMed ID: 9295273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism.
    Beese LS; Steitz TA
    EMBO J; 1991 Jan; 10(1):25-33. PubMed ID: 1989886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-terminal domain of full-length E. coli SSB is disordered even when bound to DNA.
    Savvides SN; Raghunathan S; Fütterer K; Kozlov AG; Lohman TM; Waksman G
    Protein Sci; 2004 Jul; 13(7):1942-7. PubMed ID: 15169953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks.
    Zhang J; Xing X; Herr AB; Bell CE
    Structure; 2009 May; 17(5):690-702. PubMed ID: 19446525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes.
    Hsiao YY; Duh Y; Chen YP; Wang YT; Yuan HS
    Nucleic Acids Res; 2012 Sep; 40(16):8144-54. PubMed ID: 22718982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.