BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 23609708)

  • 1. Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods.
    Dai J; Zeng JH; Lan S; Wan X; Tie SL
    Opt Express; 2013 Apr; 21(8):10025-38. PubMed ID: 23609708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon excited ultraviolet photoluminescence of zinc oxide nanorods.
    Zhu G; Xu C; Zhu J; Lu C; Cui Y; Sun X
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5854-7. PubMed ID: 19198316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Trofimov VA; Lysak TM
    Nanotechnology; 2013 Feb; 24(7):075201. PubMed ID: 23358516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-photon-induced blue emission with narrow bandwidth from hot flower-like ZnO nanorods.
    Dai J; Yuan MH; Zeng JH; Dai QF; Lan S; Xiao C; Tie SL
    Opt Express; 2015 Nov; 23(22):29231-44. PubMed ID: 26561193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable color display induced by excitation-intensity-dependent competition between second and third harmonic generation in ZnO nanorods.
    Dai J; Yuan MH; Zeng JH; Dai QF; Lan S; Xiao C; Tie SL
    Appl Opt; 2014 Jan; 53(2):189-94. PubMed ID: 24514048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles.
    Urban BE; Neogi PB; Butler SJ; Fujita Y; Neogi A
    J Biophotonics; 2012 Mar; 5(3):283-91. PubMed ID: 22045551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoluminescence studies of ZnO nanorods grown by plasma-assisted molecular beam epitaxy.
    Kim MS; Nam G; Leem JY
    J Nanosci Nanotechnol; 2013 May; 13(5):3582-5. PubMed ID: 23858907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced upconversion luminescence from ZnO/Zn hybrid nanostructures induced on a Zn foil by femtosecond laser ablation.
    Li H; Zhang CY; Li XF; Xiang J; Tie SL; Lan S
    Opt Express; 2015 Nov; 23(23):30118-26. PubMed ID: 26698492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Photoluminescence of one dimension ZnO single crystal columns array excited by different space variation direction].
    Xie PB; Zhao FL; Li YD; Gong Z; Wang HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jun; 25(6):848-53. PubMed ID: 16201355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced near band edge luminescence of Ti/ZnO nanorod heterostructures due to the surface diffusion of Ti.
    Mahanti M; Ghosh T; Basak D
    Nanoscale; 2011 Oct; 3(10):4427-33. PubMed ID: 21931902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Tunable Bioluminescence Resonance Energy Transfer via Geometry-Controlled ZnO Nanorod Coordination.
    Lim JH; Park GC; Lee SM; Lee JH; Lim B; Hwang SM; Kim JH; Park H; Joo J; Kim YP
    Small; 2015 Jul; 11(28):3469-75. PubMed ID: 25802061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells.
    Yin Z; Wu S; Zhou X; Huang X; Zhang Q; Boey F; Zhang H
    Small; 2010 Jan; 6(2):307-12. PubMed ID: 20039255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning.
    Li XH; Shao CL; Liu YC; Chu XY; Wang CH; Zhang BX
    J Chem Phys; 2008 Sep; 129(11):114708. PubMed ID: 19044981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation-wavelength dependence of fluorescence intermittency in CdSe nanorods.
    Knappenberger KL; Wong DB; Xu W; Schwartzberg AM; Wolcott A; Zhang JZ; Leone SR
    ACS Nano; 2008 Oct; 2(10):2143-53. PubMed ID: 19206461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters.
    Zhao D; Zhang C; Zhang X; Cai L; Zhang X; Luan P; Zhang Q; Tu M; Wang Y; Zhou W; Li Z; Xie S
    Nanoscale; 2014 Jan; 6(1):483-91. PubMed ID: 24219965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells.
    Ho PY; Thiyagu S; Kao SH; Kao CY; Lin CF
    Nanoscale; 2014 Jan; 6(1):466-71. PubMed ID: 24217222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved H2S gas sensing properties of ZnO nanorods decorated by a several nm ZnS thin layer.
    Qi G; Zhang L; Yuan Z
    Phys Chem Chem Phys; 2014 Jul; 16(26):13434-9. PubMed ID: 24887567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous sensing of UV light and strain with a single-layer network structure of self-assembled ZnO nanorods.
    Park JH; Lee SH; Lee TI; Myoung JM
    Chem Commun (Camb); 2015 Aug; 51(65):12912-5. PubMed ID: 26144532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel ZnO nanorod films by chemical solution deposition for planar device applications.
    Singh D; Narasimulu AA; Garcia-Gancedo L; Fu YQ; Soin N; Shao G; Luo JK
    Nanotechnology; 2013 Jul; 24(27):275601. PubMed ID: 23743485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin and dynamics of soft X-ray-excited optical luminescence of ZnO.
    Armelao L; Heigl F; Brunet S; Sammynaiken R; Regier T; Blyth RI; Zuin L; Sankari R; Vogt J; Sham TK
    Chemphyschem; 2010 Dec; 11(17):3625-31. PubMed ID: 21080402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.