BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23609894)

  • 1. A modified Holzapfel-Ogden law for a residually stressed finite strain model of the human left ventricle in diastole.
    Wang HM; Luo XY; Gao H; Ogden RW; Griffith BE; Berry C; Wang TJ
    Biomech Model Mechanobiol; 2014 Jan; 13(1):99-113. PubMed ID: 23609894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction.
    Richardson SIH; Gao H; Cox J; Janiczek R; Griffith BE; Berry C; Luo X
    Int J Numer Method Biomed Eng; 2021 May; 37(5):e3446. PubMed ID: 33559359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based finite strain modelling of the human left ventricle in diastole.
    Wang HM; Gao H; Luo XY; Berry C; Griffith BE; Ogden RW; Wang TJ
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):83-103. PubMed ID: 23293070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual Stress Estimates from Multi-cut Opening Angles of the Left Ventricle.
    Zhuan X; Luo X
    Cardiovasc Eng Technol; 2020 Aug; 11(4):381-393. PubMed ID: 32557186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo estimation of passive biomechanical properties of human myocardium.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    Med Biol Eng Comput; 2018 Sep; 56(9):1615-1631. PubMed ID: 29479659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of residual strain on the diastolic function of the left ventricle as predicted by a structural model.
    Nevo E; Lanir Y
    J Biomech; 1994 Dec; 27(12):1433-46. PubMed ID: 7806551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart.
    Nikou A; Dorsey SM; McGarvey JR; Gorman JH; Burdick JA; Pilla JJ; Gorman RC; Wenk JF
    Comput Methods Biomech Biomed Engin; 2016 Dec; 19(16):1714-1720. PubMed ID: 27153460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2015 Feb; 48(4):604-612. PubMed ID: 25596634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter estimation in a Holzapfel-Ogden law for healthy myocardium.
    Gao H; Li WG; Cai L; Berry C; Luo XY
    J Eng Math; 2015; 95(1):231-248. PubMed ID: 26663931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study.
    Guccione JM; Moonly SM; Wallace AW; Ratcliffe MB
    J Thorac Cardiovasc Surg; 2001 Sep; 122(3):592-9. PubMed ID: 11547315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive diastolic modelling of human ventricles: Effects of base movement and geometrical heterogeneity.
    Palit A; Franciosa P; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2017 Feb; 52():95-105. PubMed ID: 28065473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of material parameters and strain energy function on the wall stresses in the left ventricle.
    Behdadfar S; Navarro L; Sundnes J; Maleckar MM; Avril S
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1223-1232. PubMed ID: 28675049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of viscoelasticity on residual strain in aortic soft tissues.
    Zhang W; Sommer G; Niestrawska JA; Holzapfel GA; Nordsletten D
    Acta Biomater; 2022 Mar; 140():398-411. PubMed ID: 34823042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration.
    Veress AI; Gullberg GT; Weiss JA
    J Biomech Eng; 2005 Dec; 127(7):1195-207. PubMed ID: 16502662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volumetric growth of soft tissues evaluated in the current configuration.
    Zhuan X; Luo XY
    Biomech Model Mechanobiol; 2022 Apr; 21(2):569-588. PubMed ID: 35044527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of left-ventricular shape on end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2887-90. PubMed ID: 19964050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.