BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23610415)

  • 21. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.
    Wang M; Nie K; Cao H; Xu H; Fang Y; Tan T; Baeyens J; Liu L
    Bioresour Technol; 2017 Sep; 239():542-545. PubMed ID: 28550989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering nature for gaseous hydrocarbon production.
    Amer M; Toogood H; Scrutton NS
    Microb Cell Fact; 2020 Nov; 19(1):209. PubMed ID: 33187524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofuels: biomolecular engineering fundamentals and advances.
    Li H; Cann AF; Liao JC
    Annu Rev Chem Biomol Eng; 2010; 1():19-36. PubMed ID: 22432571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering Escherichia coli to synthesize free fatty acids.
    Lennen RM; Pfleger BF
    Trends Biotechnol; 2012 Dec; 30(12):659-67. PubMed ID: 23102412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.
    Beller HR; Goh EB; Keasling JD
    Appl Environ Microbiol; 2010 Feb; 76(4):1212-23. PubMed ID: 20038703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of fatty acid supply and aldehyde reductase deletion on cyanobacteria alkane generating pathway in Escherichia coli.
    Wang J; Yu H; Song X; Zhu K
    J Ind Microbiol Biotechnol; 2018 May; 45(5):329-334. PubMed ID: 29594624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renewable jet fuel.
    Kallio P; Pásztor A; Akhtar MK; Jones PR
    Curr Opin Biotechnol; 2014 Apr; 26():50-5. PubMed ID: 24679258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals.
    Dellomonaco C; Clomburg JM; Miller EN; Gonzalez R
    Nature; 2011 Aug; 476(7360):355-9. PubMed ID: 21832992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering metabolic systems for production of advanced fuels.
    Yan Y; Liao JC
    J Ind Microbiol Biotechnol; 2009 Apr; 36(4):471-9. PubMed ID: 19198907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway.
    Jaroensuk J; Intasian P; Kiattisewee C; Munkajohnpon P; Chunthaboon P; Buttranon S; Trisrivirat D; Wongnate T; Maenpuen S; Tinikul R; Chaiyen P
    J Biol Chem; 2019 Jul; 294(30):11536-11548. PubMed ID: 31182484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial production of free fatty acids from freshwater macroalgal cellulose.
    Hoover SW; Marner WD; Brownson AK; Lennen RM; Wittkopp TM; Yoshitani J; Zulkifly S; Graham LE; Chaston SD; McMahon KD; Pfleger BF
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):435-46. PubMed ID: 21643704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable.
    Fu WJ; Chi Z; Ma ZC; Zhou HX; Liu GL; Lee CF; Chi ZM
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7481-94. PubMed ID: 26231137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast.
    Zhu Z; Zhou YJ; Kang MK; Krivoruchko A; Buijs NA; Nielsen J
    Metab Eng; 2017 Nov; 44():81-88. PubMed ID: 28939277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An engineered pathway for the biosynthesis of renewable propane.
    Kallio P; Pásztor A; Thiel K; Akhtar MK; Jones PR
    Nat Commun; 2014 Sep; 5():4731. PubMed ID: 25181600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of microbial pathways for advanced biofuels production.
    Zhang F; Rodriguez S; Keasling JD
    Curr Opin Biotechnol; 2011 Dec; 22(6):775-83. PubMed ID: 21620688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Prokaryotic Microalga
    Kim YS; Baek H; Yun HS; Lee JH; Lee KI; Kim HS; Yoon HS
    Pol J Microbiol; 2023 Sep; 72(3):307-317. PubMed ID: 37725893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes.
    Lennen RM; Braden DJ; West RA; Dumesic JA; Pfleger BF
    Biotechnol Bioeng; 2010 Jun; 106(2):193-202. PubMed ID: 20073090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production.
    Fatma Z; Hartman H; Poolman MG; Fell DA; Srivastava S; Shakeel T; Yazdani SS
    Metab Eng; 2018 Mar; 46():1-12. PubMed ID: 29408291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering diverse fatty acid compositions of phospholipids in Escherichia coli.
    Bai W; Anthony WE; Hartline CJ; Wang S; Wang B; Ning J; Hsu FF; Dantas G; Zhang F
    Metab Eng; 2022 Nov; 74():11-23. PubMed ID: 36058465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systems metabolic engineering design: fatty acid production as an emerging case study.
    Tee TW; Chowdhury A; Maranas CD; Shanks JV
    Biotechnol Bioeng; 2014 May; 111(5):849-57. PubMed ID: 24481660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.