These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23610417)

  • 1. Broadening the scope of glycosyltransferase-catalyzed sugar nucleotide synthesis.
    Gantt RW; Peltier-Pain P; Singh S; Zhou M; Thorson JS
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7648-53. PubMed ID: 23610417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple strategy for glycosyltransferase-catalyzed aminosugar nucleotide synthesis.
    Zhang J; Singh S; Hughes RR; Zhou M; Sunkara M; Morris AJ; Thorson JS
    Chembiochem; 2014 Mar; 15(5):647-52. PubMed ID: 24677528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions.
    Gantt RW; Peltier-Pain P; Cournoyer WJ; Thorson JS
    Nat Chem Biol; 2011 Aug; 7(10):685-91. PubMed ID: 21857660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective chemical synthesis of sugar nucleotides via direct displacement of acylated glycosyl bromides.
    Timmons SC; Jakeman DL
    Org Lett; 2007 Mar; 9(7):1227-30. PubMed ID: 17338534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OleD Loki as a Catalyst for Tertiary Amine and Hydroxamate Glycosylation.
    Hughes RR; Shaaban KA; Zhang J; Cao H; Phillips GN; Thorson JS
    Chembiochem; 2017 Feb; 18(4):363-367. PubMed ID: 28067448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of unnatural sugar nucleotides and their evaluation as donor substrates in glycosyltransferase-catalyzed reactions.
    Khaled A; Ivannikova T; Augé C
    Carbohydr Res; 2004 Nov; 339(16):2641-9. PubMed ID: 15519322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput colorimetric assays for nucleotide sugar formation and glycosyl transfer.
    Gantt RW; Thorson JS
    Methods Enzymol; 2012; 516():345-60. PubMed ID: 23034237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms.
    Charnock SJ; Davies GJ
    Biochemistry; 1999 May; 38(20):6380-5. PubMed ID: 10350455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altering UDP-glucose Donor Substrate Specificity of
    Cho KW; Kim TS; Le TT; Nguyen HT; Oh YS; Pandey RP; Sohng JK
    J Microbiol Biotechnol; 2019 Feb; 29(2):268-273. PubMed ID: 30602272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PseG of pseudaminic acid biosynthesis: a UDP-sugar hydrolase as a masked glycosyltransferase.
    Liu F; Tanner ME
    J Biol Chem; 2006 Jul; 281(30):20902-20909. PubMed ID: 16728396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate flexibility of vicenisaminyltransferase VinC involved in the biosynthesis of vicenistatin.
    Minami A; Eguchi T
    J Am Chem Soc; 2007 Apr; 129(16):5102-7. PubMed ID: 17388594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective derivatization of nucleotide diphosphate (NDP)-4-keto sugars for electrospray ionization-mass spectrometry (ESI-MS).
    Kim YG; Park HY; Yoo D; Sung C; Song E; Lee JH; Choi YH; Kim YH; Lee CS; Park K; Kim BG; Yang YH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Apr; 893-894():177-81. PubMed ID: 22459405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repetitive Batch Mode Facilitates Enzymatic Synthesis of the Nucleotide Sugars UDP-Gal, UDP-GlcNAc, and UDP-GalNAc on a Multi-Gram Scale.
    Fischöder T; Wahl C; Zerhusen C; Elling L
    Biotechnol J; 2019 Apr; 14(4):. PubMed ID: 30367549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions.
    Zhang C; Griffith BR; Fu Q; Albermann C; Fu X; Lee IK; Li L; Thorson JS
    Science; 2006 Sep; 313(5791):1291-4. PubMed ID: 16946071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple chemical synthesis of sugar nucleoside diphosphates in water.
    Tanaka H; Yoshimura Y; Hindsgaul O
    Curr Protoc Nucleic Acid Chem; 2013 Oct; 54():13.12.1-13.12.10. PubMed ID: 24510796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the polymerization initiation and activity of Pasteurella multocida heparosan synthase PmHS2, an enzyme with glycosyltransferase and UDP-sugar hydrolase activity.
    Chavaroche AA; van den Broek LA; Springer J; Boeriu C; Eggink G
    J Biol Chem; 2011 Jan; 286(3):1777-85. PubMed ID: 21084307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput assays of leloir-glycosyltransferase reactions: The applications of rYND1 in glycotechnology.
    Li Y; Hou J; Wang F; Sheng J
    J Biotechnol; 2016 Jun; 227():10-18. PubMed ID: 27059478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput mass-spectrometry monitoring for multisubstrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases.
    Yang M; Brazier M; Edwards R; Davis BG
    Chembiochem; 2005 Feb; 6(2):346-57. PubMed ID: 15678424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midecamycin Is Inactivated by Several Different Sugar Moieties at Its Inactivation Site.
    Lin R; Hong LL; Jiang ZK; Li KM; He WQ; Kong JQ
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of residues that confer sugar selectivity to UDP-glycosyltransferase 3A (UGT3A) enzymes.
    Meech R; Rogers A; Zhuang L; Lewis BC; Miners JO; Mackenzie PI
    J Biol Chem; 2012 Jul; 287(29):24122-30. PubMed ID: 22621930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.