These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 23610447)

  • 21. Metabolic reprogramming as a feast for virus replication.
    Polcicova K; Badurova L; Tomaskova J
    Acta Virol; 2020; 64(2):201-215. PubMed ID: 32551788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic alterations in cancer cells and therapeutic implications.
    Hammoudi N; Ahmed KB; Garcia-Prieto C; Huang P
    Chin J Cancer; 2011 Aug; 30(8):508-25. PubMed ID: 21801600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic targeting of cancers: from molecular mechanisms to therapeutic strategies.
    Sheng H; Niu B; Sun H
    Curr Med Chem; 2009; 16(13):1561-87. PubMed ID: 19442134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondria Targeting as an Effective Strategy for Cancer Therapy.
    Ghosh P; Vidal C; Dey S; Zhang L
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development.
    Teuwen LA; Geldhof V; Carmeliet P
    Dev Biol; 2019 Mar; 447(1):90-102. PubMed ID: 29224892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention.
    Zhang Y; Yang JM
    Cancer Biol Ther; 2013 Feb; 14(2):81-9. PubMed ID: 23192270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dysregulation of glutaminase and glutamine synthetase in cancer.
    Matés JM; Campos-Sandoval JA; Santos-Jiménez JL; Márquez J
    Cancer Lett; 2019 Dec; 467():29-39. PubMed ID: 31574293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting Tumor Mitochondrial Metabolism Overcomes Resistance to Antiangiogenics.
    Navarro P; Bueno MJ; Zagorac I; Mondejar T; Sanchez J; Mourón S; Muñoz J; Gómez-López G; Jimenez-Renard V; Mulero F; Chandel NS; Quintela-Fandino M
    Cell Rep; 2016 Jun; 15(12):2705-18. PubMed ID: 27292634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cancer stem cell metabolism: a potential target for cancer therapy.
    Deshmukh A; Deshpande K; Arfuso F; Newsholme P; Dharmarajan A
    Mol Cancer; 2016 Nov; 15(1):69. PubMed ID: 27825361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance.
    Taddia L; D'Arca D; Ferrari S; Marraccini C; Severi L; Ponterini G; Assaraf YG; Marverti G; Costi MP
    Drug Resist Updat; 2015 Nov; 23():20-54. PubMed ID: 26690339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PKM2 tyrosine phosphorylation and glutamine metabolism signal a different view of the Warburg effect.
    Dang CV
    Sci Signal; 2009 Nov; 2(97):pe75. PubMed ID: 19920249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overview of Glutamine Dependency and Metabolic Rescue Protocols.
    Qie S; He D; Sang N
    Methods Mol Biol; 2019; 1928():427-439. PubMed ID: 30725468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hopefully devoted to Q: targeting glutamine addiction in cancer.
    Still ER; Yuneva MO
    Br J Cancer; 2017 May; 116(11):1375-1381. PubMed ID: 28441384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells.
    Chen JQ; Russo J
    Biochim Biophys Acta; 2012 Dec; 1826(2):370-84. PubMed ID: 22750268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism.
    Wellen KE; Lu C; Mancuso A; Lemons JM; Ryczko M; Dennis JW; Rabinowitz JD; Coller HA; Thompson CB
    Genes Dev; 2010 Dec; 24(24):2784-99. PubMed ID: 21106670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling.
    Allen E; Miéville P; Warren CM; Saghafinia S; Li L; Peng MW; Hanahan D
    Cell Rep; 2016 May; 15(6):1144-60. PubMed ID: 27134166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment.
    Tanaka K; Sasayama T; Irino Y; Takata K; Nagashima H; Satoh N; Kyotani K; Mizowaki T; Imahori T; Ejima Y; Masui K; Gini B; Yang H; Hosoda K; Sasaki R; Mischel PS; Kohmura E
    J Clin Invest; 2015 Apr; 125(4):1591-602. PubMed ID: 25798620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells?
    Dang CV
    Cell Cycle; 2010 Oct; 9(19):3884-6. PubMed ID: 20948290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The emerging role of targeting cancer metabolism for cancer therapy.
    Farhadi P; Yarani R; Dokaneheifard S; Mansouri K
    Tumour Biol; 2020 Oct; 42(10):1010428320965284. PubMed ID: 33028168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypoxia Dictates Metabolic Rewiring of Tumors: Implications for Chemoresistance.
    Belisario DC; Kopecka J; Pasino M; Akman M; De Smaele E; Donadelli M; Riganti C
    Cells; 2020 Dec; 9(12):. PubMed ID: 33291643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.