These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23610628)

  • 1. Changes in breeding phenology of eastern Ontario frogs over four decades.
    Klaus SP; Lougheed SC
    Ecol Evol; 2013 Apr; 3(4):835-45. PubMed ID: 23610628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphibian breeding phenology trends under climate change: predicting the past to forecast the future.
    Green DM
    Glob Chang Biol; 2017 Feb; 23(2):646-656. PubMed ID: 27273300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of temperature and precipitation changes on shifts in breeding phenology of an endangered toad.
    Dalpasso A; Seglie D; Eusebio Bergò P; Ciracì A; Compostella M; Laddaga L; Manica M; Marino G; Pandolfo I; Soldato G; Falaschi M
    Sci Rep; 2023 Sep; 13(1):14573. PubMed ID: 37666849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field records with historical and experimental evidences.
    Hassan T; Hamid M; Wani SA; Malik AH; Waza SA; Khuroo AA
    Sci Total Environ; 2021 Nov; 795():148811. PubMed ID: 34246140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term climate impacts on breeding bird phenology in Pennsylvania, USA.
    McDermott ME; DeGroote LW
    Glob Chang Biol; 2016 Oct; 22(10):3304-19. PubMed ID: 27195453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community.
    Todd BD; Scott DE; Pechmann JH; Gibbons JW
    Proc Biol Sci; 2011 Jul; 278(1715):2191-7. PubMed ID: 21159681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microclimate-driven trends in spring-emergence phenology in a temperate reptile (
    Turner RK; Maclean IMD
    Ecol Evol; 2022 Feb; 12(2):e8623. PubMed ID: 35169459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental factors influencing calling in sympatric anurans.
    Oseen KL; Wassersug RJ
    Oecologia; 2002 Dec; 133(4):616-625. PubMed ID: 28466161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weather variability permitted within amphibian monitoring protocol and affects on calling Hylidae.
    Milne R; Bennett L; Hoyle M
    Environ Monit Assess; 2013 Nov; 185(11):8879-89. PubMed ID: 23625355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades.
    Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y
    Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snow melt timing acts independently and in conjunction with temperature accumulation to drive subalpine plant phenology.
    Jerome DK; Petry WK; Mooney KA; Iler AM
    Glob Chang Biol; 2021 Oct; 27(20):5054-5069. PubMed ID: 34265142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spring wildflower phenology and pollinator activity respond similarly to climatic variation in an eastern hardwood forest.
    Sevenello M; Sargent RD; Forrest JRK
    Oecologia; 2020 Jun; 193(2):475-488. PubMed ID: 32462408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calling phenology of a diverse amphibian assemblage in response to meteorological conditions.
    Plenderleith TL; Stratford D; Lollback GW; Chapple DG; Reina RD; Hero JM
    Int J Biometeorol; 2018 May; 62(5):873-882. PubMed ID: 29242979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of climate on the timing and rate of spring bird migration.
    Marra PP; Francis CM; Mulvihill RS; Moore FR
    Oecologia; 2005 Jan; 142(2):307-15. PubMed ID: 15480801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in predicting the outcome of competition based on climate change-induced phenological and body size shifts.
    Rollins HB; Benard MF
    Oecologia; 2020 Jul; 193(3):749-759. PubMed ID: 32654046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.