BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23610754)

  • 21. Effect of the Antimicrobial Agents Peppermint Essential Oil and Silver Nanoparticles on Bone Cement Properties.
    Robu A; Antoniac A; Ciocoiu R; Grosu E; Rau JV; Fosca M; Krasnyuk II; Pircalabioru GG; Manescu Paltanea V; Antoniac I; Gradinaru S
    Biomimetics (Basel); 2022 Sep; 7(3):. PubMed ID: 36134941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane.
    Sugino A; Miyazaki T; Kawachi G; Kikuta K; Ohtsuki C
    J Mater Sci Mater Med; 2008 Mar; 19(3):1399-405. PubMed ID: 17914619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles.
    Russo T; Gloria A; De Santis R; D'Amora U; Balato G; Vollaro A; Oliviero O; Improta G; Triassi M; Ambrosio L
    Bioact Mater; 2017 Sep; 2(3):156-161. PubMed ID: 29744425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan].
    Li Y; Lei W; Wang Z; Zhang Y; Niu E; Yu L; Wu J; Zang Y; Liu Z; Wu Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):320-5. PubMed ID: 23672134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimicrobial potential of bioactive bone cements.
    Koller G; Roether J; Bruce K; Deb S
    J Appl Biomater Biomech; 2008; 6(1):16-22. PubMed ID: 20740442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cement particles containing radio-opacifiers stimulate pro-osteolytic cytokine production from a human monocytic cell line.
    Shardlow DL; Stone MH; Ingham E; Fisher J
    J Bone Joint Surg Br; 2003 Aug; 85(6):900-5. PubMed ID: 12931816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Additives Imparting Antimicrobial Properties to Acrylic Bone Cements.
    Robu A; Antoniac A; Grosu E; Vasile E; Raiciu AD; Iordache F; Antoniac VI; Rau JV; Yankova VG; Ditu LM; Saceleanu V
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical evaluation of calcium phosphate-based nanocomposite versus polymethylmethacrylate cement for percutaneous kyphoplasty.
    Lu Q; Liu C; Wang D; Liu H; Yang H; Yang L
    Spine J; 2019 Nov; 19(11):1871-1884. PubMed ID: 31202837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone.
    Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T
    J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of the antibiotic-releasing gelatin/PMMA bone cement.
    Chen L; Tang Y; Zhao K; Zha X; Liu J; Bai H; Wu Z
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110448. PubMed ID: 31472387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hip screw augmentation with an in situ-setting calcium phosphate cement: an in vitro biomechanical analysis.
    Moore DC; Frankenburg EP; Goulet JA; Goldstein SA
    J Orthop Trauma; 1997 Nov; 11(8):577-83. PubMed ID: 9415864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Study of Antibiotic Elution Profiles From Alternative Formulations of Polymethylmethacrylate Bone Cement.
    Meeker DG; Cooper KB; Renard RL; Mears SC; Smeltzer MS; Barnes CL
    J Arthroplasty; 2019 Jul; 34(7):1458-1461. PubMed ID: 30935799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Successful clinical use of daptomycin-impregnated bone cement in two-stage revision hip surgery for prosthetic joint infection.
    Cortes NJ; Lloyd JM; Koziol L; O'Hara L
    Ann Pharmacother; 2013 Jan; 47(1):e2. PubMed ID: 23324502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement.
    Saruta J; Ozawa R; Hamajima K; Saita M; Sato N; Ishijima M; Kitajima H; Ogawa T
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vitro and In Vivo Characterization of Premixed PMMA-CaP Composite Bone Cements.
    Aghyarian S; Bentley E; Hoang TN; Gindri IM; Kosmopoulos V; Kim HKW; C Rodrigues D
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2267-2277. PubMed ID: 33445286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of it impregnated PMMA bone cement, III: effect of various ratios of initiator/inhibitor on the surface modification of UHMWPE powder.
    Yang DH; Yoon GH; Kim SH; Rhee JM; Kim YS; Khang G
    J Biomater Sci Polym Ed; 2005; 16(9):1121-38. PubMed ID: 16231603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elution of rifampin and vancomycin from a weight-bearing silorane-based bone cement.
    Funk GA; Menuey EM; Ensminger WP; Kilway KV; McIff TE
    Bone Joint Res; 2021 Apr; 10(4):277-284. PubMed ID: 33845590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibiotic-Loaded Polymethylmethacrylate Beads and Spacers in Treatment of Orthopedic Infections and the Role of Biofilm Formation.
    van Vugt TAG; Arts JJ; Geurts JAP
    Front Microbiol; 2019; 10():1626. PubMed ID: 31402901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Bone cements based on polymethylmethacrylate].
    Breusch SJ; Kühn KD
    Orthopade; 2003 Jan; 32(1):41-50. PubMed ID: 12557085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.