BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23611465)

  • 1. Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates.
    Li JM; Ma WF; You LJ; Guo J; Hu J; Wang CC
    Langmuir; 2013 May; 29(20):6147-55. PubMed ID: 23611465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene-co-acrylic acid) nanospheres as novel active substrates.
    Li JM; Ma WF; Wei C; You LJ; Guo J; Hu J; Wang CC
    Langmuir; 2011 Dec; 27(23):14539-44. PubMed ID: 22011076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe.
    Li X; Wang L; Li C
    Chemistry; 2015 Apr; 21(18):6817-22. PubMed ID: 25766032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics.
    Ngo HT; Gandra N; Fales AM; Taylor SM; Vo-Dinh T
    Biosens Bioelectron; 2016 Jul; 81():8-14. PubMed ID: 26913502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres.
    Sugawa K; Akiyama T; Tanoue Y; Harumoto T; Yanagida S; Yasumori A; Tomita S; Otsuki J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21182-9. PubMed ID: 25558009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.
    Lee S; Chon H; Lee J; Ko J; Chung BH; Lim DW; Choo J
    Biosens Bioelectron; 2014 Jan; 51():238-43. PubMed ID: 23973735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of polymer core@silver shell hybrid nanoparticles with super surface enhanced Raman scattering capability.
    Huo D; He J; Yang S; Zhou Z; Hu Y; Epple M
    J Colloid Interface Sci; 2013 Mar; 393():119-25. PubMed ID: 23261332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@Ag NRs and magnetic beads.
    Wu L; Xiao X; Chen K; Yin W; Li Q; Wang P; Lu Z; Ma J; Han H
    Biosens Bioelectron; 2017 Jun; 92():321-327. PubMed ID: 27839730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of silica-encapsulated hollow gold nanosphere tags using layer-by-layer method for multiplex surface-enhanced raman scattering detection.
    Huang J; Kim KH; Choi N; Chon H; Lee S; Choo J
    Langmuir; 2011 Aug; 27(16):10228-33. PubMed ID: 21702512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification.
    Li H; Chen Q; Mehedi Hassan M; Chen X; Ouyang Q; Guo Z; Zhao J
    Biosens Bioelectron; 2017 Jun; 92():192-199. PubMed ID: 28214746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles.
    Harper MM; Dougan JA; Shand NC; Graham D; Faulds K
    Analyst; 2012 May; 137(9):2063-8. PubMed ID: 22434199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic silver nanospheres embedded ε-caprolactone/reduced graphite oxide nanolayers as active SERS substrates.
    Veerabaghu PP; Ramasamy P; Sathe V; Ramasamy A; Mahalingam U
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():431-437. PubMed ID: 31029338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection.
    Tian S; Neumann O; McClain MJ; Yang X; Zhou L; Zhang C; Nordlander P; Halas NJ
    Nano Lett; 2017 Aug; 17(8):5071-5077. PubMed ID: 28664736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free surface-enhanced Raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth.
    Gao F; Lei J; Ju H
    Anal Chem; 2013 Dec; 85(24):11788-93. PubMed ID: 24171654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods.
    Pylaev TE; Khanadeev VA; Khlebtsov BN; Dykman LA; Bogatyrev VA; Khlebtsov NG
    Nanotechnology; 2011 Jul; 22(28):285501. PubMed ID: 21625041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica Nanospheres Coated Silver Islands as an Effective Opto-Plasmonic SERS Active Platform for Rapid and Sensitive Detection of Prostate Cancer Biomarkers.
    Pandey A; Sarkar S; Pandey SK; Srivastava A
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic properties of regiospecific core-satellite assemblies of gold nanostars and nanospheres.
    Indrasekara AS; Thomas R; Fabris L
    Phys Chem Chem Phys; 2015 Sep; 17(33):21133-42. PubMed ID: 25380028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative SERS-based DNA detection assisted by magnetic microspheres.
    Zhang J; Joshi P; Zhou Y; Ding R; Zhang P
    Chem Commun (Camb); 2015 Oct; 51(83):15284-6. PubMed ID: 26335614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles.
    Zhao Y; Yang Y; Luo Y; Yang X; Li M; Song Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21780-6. PubMed ID: 26381109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.