These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23611515)

  • 21. Destructing the Plasma Membrane with Activatable Vesicular DNA Nanopores.
    Chen L; Liang S; Chen Y; Wu M; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):96-105. PubMed ID: 31815409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes.
    Arnott PM; Howorka S
    ACS Nano; 2019 Mar; 13(3):3334-3340. PubMed ID: 30794375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.
    Bessonov A; Takemoto JY; Simmel FC
    ACS Nano; 2012 Apr; 6(4):3356-63. PubMed ID: 22424398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Porphyrin-Assisted Docking of a Thermophage Portal Protein into Lipid Bilayers: Nanopore Engineering and Characterization.
    Cressiot B; Greive SJ; Si W; Pascoa TC; Mojtabavi M; Chechik M; Jenkins HT; Lu X; Zhang K; Aksimentiev A; Antson AA; Wanunu M
    ACS Nano; 2017 Dec; 11(12):11931-11945. PubMed ID: 29120602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-Stimuli-Responsive and Mechano-Actuated Biomimetic Membrane Nanopores Self-Assembled from DNA.
    Xing Y; Dorey A; Howorka S
    Adv Mater; 2023 Jul; 35(29):e2300589. PubMed ID: 37029712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure.
    Morzy D; Joshi H; Sandler SE; Aksimentiev A; Keyser UF
    Nano Lett; 2021 Nov; 21(22):9789-9796. PubMed ID: 34767378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Transport through a Biomimetic DNA Channel on Live Cell Membranes.
    Lv C; Gu X; Li H; Zhao Y; Yang D; Yu W; Han D; Li J; Tan W
    ACS Nano; 2020 Nov; 14(11):14616-14626. PubMed ID: 32897687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering Lipid Membranes with Programmable DNA Nanostructures.
    Shen Q; Grome MW; Yang Y; Lin C
    Adv Biosyst; 2020 Jan; 4(1):. PubMed ID: 31934608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanopores formed by DNA origami: a review.
    Bell NA; Keyser UF
    FEBS Lett; 2014 Oct; 588(19):3564-70. PubMed ID: 24928438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltage Gating of a Biomimetic Nanopore: Electrowetting of a Hydrophobic Barrier.
    Trick JL; Song C; Wallace EJ; Sansom MS
    ACS Nano; 2017 Feb; 11(2):1840-1847. PubMed ID: 28141923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tetramethylammonium-filled protein nanopore for single-molecule analysis.
    Wang Y; Yao F; Kang XF
    Anal Chem; 2015 Oct; 87(19):9991-7. PubMed ID: 26337294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Modular, Dynamic, DNA-Based Platform for Regulating Cargo Distribution and Transport between Lipid Domains.
    Rubio-Sánchez R; Barker SE; Walczak M; Cicuta P; Michele LD
    Nano Lett; 2021 Apr; 21(7):2800-2808. PubMed ID: 33733783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials.
    Birkholz O; Burns JR; Richter CP; Psathaki OE; Howorka S; Piehler J
    Nat Commun; 2018 Apr; 9(1):1521. PubMed ID: 29670084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA Origami Nanoplate-Based Emulsion with Nanopore Function.
    Ishikawa D; Suzuki Y; Kurokawa C; Ohara M; Tsuchiya M; Morita M; Yanagisawa M; Endo M; Kawano R; Takinoue M
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15299-15303. PubMed ID: 31411794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of individual protein channels in lipid bilayers suspended in nanopores.
    Studer A; Han X; Winkler FK; Tiefenauer LX
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):325-31. PubMed ID: 19576736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triggered Assembly of a DNA-Based Membrane Channel.
    Lanphere C; Ciccone J; Dorey A; Hagleitner-Ertuğrul N; Knyazev D; Haider S; Howorka S
    J Am Chem Soc; 2022 Mar; 144(10):4333-4344. PubMed ID: 35253434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Biomimetic DNA-Based Membrane Gate for Protein-Controlled Transport of Cytotoxic Drugs.
    Lanphere C; Arnott PM; Jones SF; Korlova K; Howorka S
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1903-1908. PubMed ID: 33231913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amphiphilic DNA tiles for controlled insertion and 2D assembly on fluid lipid membranes: the effect on mechanical properties.
    Dohno C; Makishi S; Nakatani K; Contera S
    Nanoscale; 2017 Mar; 9(9):3051-3058. PubMed ID: 28186523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanopore sequencing technology: nanopore preparations.
    Rhee M; Burns MA
    Trends Biotechnol; 2007 Apr; 25(4):174-81. PubMed ID: 17320228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.