These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23611801)
1. Greek "red mud" residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process. Samouhos M; Taxiarchou M; Tsakiridis PE; Potiriadis K J Hazard Mater; 2013 Jun; 254-255():193-205. PubMed ID: 23611801 [TBL] [Abstract][Full Text] [Related]
2. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Li G; Liu M; Rao M; Jiang T; Zhuang J; Zhang Y J Hazard Mater; 2014 Sep; 280():774-80. PubMed ID: 25240647 [TBL] [Abstract][Full Text] [Related]
3. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon. Li M; Peng B; Chai L; Peng N; Yan H; Hou D J Hazard Mater; 2012 Oct; 237-238():323-30. PubMed ID: 22975260 [TBL] [Abstract][Full Text] [Related]
4. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation. Zhang Y; Li H; Yu X J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161 [TBL] [Abstract][Full Text] [Related]
5. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. Liu W; Yang J; Xiao B J Hazard Mater; 2009 Jan; 161(1):474-8. PubMed ID: 18457916 [TBL] [Abstract][Full Text] [Related]
6. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation. Yang H; Jing L; Zhang B J Hazard Mater; 2011 Jan; 185(2-3):1405-11. PubMed ID: 21071144 [TBL] [Abstract][Full Text] [Related]
7. An active dealkalization of red mud with roasting and water leaching. Zhu X; Li W; Guan X J Hazard Mater; 2015 Apr; 286():85-91. PubMed ID: 25559862 [TBL] [Abstract][Full Text] [Related]
8. Hidden values in bauxite residue (red mud): recovery of metals. Liu Y; Naidu R Waste Manag; 2014 Dec; 34(12):2662-73. PubMed ID: 25269817 [TBL] [Abstract][Full Text] [Related]
9. Effects of thermal treatments on the characterisation and utilisation of red mud with sawdust additive. Liu Y; Naidu R; Ming H; Dharmarajan R; Du J Waste Manag Res; 2016 Jun; 34(6):518-26. PubMed ID: 26951343 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics. Zhang N; Liu X; Sun H; Li L J Hazard Mater; 2011 Jan; 185(1):329-35. PubMed ID: 20932639 [TBL] [Abstract][Full Text] [Related]
11. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. Li C; Sun H; Bai J; Li L J Hazard Mater; 2010 Feb; 174(1-3):71-7. PubMed ID: 19782467 [TBL] [Abstract][Full Text] [Related]
12. Surface restructuring of red mud to produce FeO Pinto PS; Lanza GD; Souza MN; Ardisson JD; Lago RM Environ Sci Pollut Res Int; 2018 Mar; 25(7):6762-6771. PubMed ID: 29264851 [TBL] [Abstract][Full Text] [Related]
13. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent. Wu CC; Chang FC; Chen WS; Tsai MS; Wang YN J Environ Manage; 2014 Oct; 143():208-13. PubMed ID: 24921184 [TBL] [Abstract][Full Text] [Related]
14. Silica-coated iron nanocubes: preparation, characterization and application in microwave absorption. Ni X; Zheng Z; Hu X; Xiao X J Colloid Interface Sci; 2010 Jan; 341(1):18-22. PubMed ID: 19833348 [TBL] [Abstract][Full Text] [Related]
15. Reductive roasting of arsenic-contaminated red mud for Fe resources recovery driven by johnbaumite-based arsenic thermostabilization strategy. Yang D; Shi M; Zhang J; Sasaki A; Endo M J Hazard Mater; 2023 Jun; 452():131255. PubMed ID: 36989791 [TBL] [Abstract][Full Text] [Related]
16. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud. Yuan S; Liu X; Gao P; Han Y J Hazard Mater; 2020 Jul; 394():122579. PubMed ID: 32283382 [TBL] [Abstract][Full Text] [Related]
17. Continuous pig iron making by microwave heating with 12.5 kW at 2.45 GHz. Hara K; Hayashi M; Sato M; Nagata K J Microw Power Electromagn Energy; 2011; 45(3):137-47. PubMed ID: 24427877 [TBL] [Abstract][Full Text] [Related]
18. Characterization and recovery of copper values from discarded slag. Das B; Mishra BK; Angadi S; Pradhan SK; Prakash S; Mohanty J Waste Manag Res; 2010 Jun; 28(6):561-7. PubMed ID: 19748952 [TBL] [Abstract][Full Text] [Related]
19. Defluorination study of spent carbon cathode by microwave high-temperature roasting. Zhu Z; Xu L; Han Z; Liu J; Zhang L; Yang C; Xu Z; Liu P J Environ Manage; 2022 Jan; 302(Pt A):114028. PubMed ID: 34731716 [TBL] [Abstract][Full Text] [Related]
20. A study on the structural behavior of reduced pyrite ash pellets by XRD and XRF analysis. Tugrul N; Derun EM; Piskin MB; Ekerim A Waste Manag Res; 2009 May; 27(3):281-7. PubMed ID: 19443647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]