These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23611801)

  • 21. Red mud recycling by Fe and Al recovery through the hydrometallurgy method: a collaborative strategy for aluminum and iron industry.
    Liu X; Zou Y; Geng R; Li B; Zhu T
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43377-43386. PubMed ID: 36656474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neutralization of red mud with pickling waste liquor using Taguchi's design of experimental methodology.
    Rai S; Wasewar KL; Lataye DH; Mishra RS; Puttewar SP; Chaddha MJ; Mahindiran P; Mukhopadhyay J
    Waste Manag Res; 2012 Sep; 30(9):922-30. PubMed ID: 22751850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphology and phase evolution in microwave synthesized Al/FeO4 system.
    Chuan LC; Yoshikawaa N; Taniguchia S
    J Microw Power Electromagn Energy; 2011; 45(3):148-54. PubMed ID: 24427878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical and chemical separation of Ti, rare earth elements, Fe, and Al from red mud by carbothermal reduction, magnetic separation, and leaching.
    Habibi H; Pirouzan D; Shakibania S; Pourkarimi Z; Mokmeli M
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):62952-62972. PubMed ID: 35449328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The exploration of making acidproof fracturing proppants using red mud.
    Tian X; Wu B; Li J
    J Hazard Mater; 2008 Dec; 160(2-3):589-93. PubMed ID: 18434003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on Magnetization Roasting Kinetics of High-Iron and Low-Silicon Red Mud.
    Xie L; Hao J; Hu C; Zhang H
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon deposition and phase transformations in red mud on exposure to methane.
    Sushil S; Alabdulrahman AM; Balakrishnan M; Batra VS; Blackley RA; Clapp J; Hargreaves JS; Monaghan A; Pulford ID; Rico JL; Zhou W
    J Hazard Mater; 2010 Aug; 180(1-3):409-18. PubMed ID: 20462696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaching of metals from fresh and sintered red mud.
    Ghosh I; Guha S; Balasubramaniam R; Kumar AV
    J Hazard Mater; 2011 Jan; 185(2-3):662-8. PubMed ID: 21035262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research on red mud treatment by a circulating superconducting magnetic separator.
    Li Y; Chen H; Wang J; Xu F; Zhang W
    Environ Technol; 2014; 35(9-12):1243-9. PubMed ID: 24701921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical impedance spectroscopy as an alternative to determine dielectric constant of potatoes at various moisture contents.
    Chee G; Rungraeng N; Han JH; Jun S
    J Food Sci; 2014 Feb; 79(2):E195-201. PubMed ID: 24446887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction of metallic lead from cathode ray tube (CRT) funnel glass by thermal reduction with metallic iron.
    Lu X; Shih K; Liu C; Wang F
    Environ Sci Technol; 2013 Sep; 47(17):9972-8. PubMed ID: 23915263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel silica alumina-based backfill material composed of coal refuse and fly ash.
    Yao Y; Sun H
    J Hazard Mater; 2012 Apr; 213-214():71-82. PubMed ID: 22336582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling.
    Zhao Y; Liu B; Zhang L; Guo S
    J Hazard Mater; 2020 Feb; 384():121487. PubMed ID: 31708289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI).
    Costa RC; Moura FC; Oliveira PE; Magalhães F; Ardisson JD; Lago RM
    Chemosphere; 2010 Feb; 78(9):1116-20. PubMed ID: 20060564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.
    Ippolito NM; Belardi G; Medici F; Piga L
    Waste Manag; 2016 May; 51():182-189. PubMed ID: 26777778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of hard magnetic NdFeB composite particles by recycling the waste using microwave assisted auto-combustion and reduction method.
    Zhou X; Tian YL; Yu HY; Zhang H; Zhong XC; Liu ZW
    Waste Manag; 2019 Mar; 87():645-651. PubMed ID: 31109566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaching of aluminum and iron from boiler slag generated from a typical Chinese Steel Plant.
    Li J; Gan J; Li X
    J Hazard Mater; 2009 Jul; 166(2-3):1096-101. PubMed ID: 19157693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials.
    Liu X; Zhang N; Yao Y; Sun H; Feng H
    J Hazard Mater; 2013 Nov; 262():428-38. PubMed ID: 24076570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of TiO2 nano-powders prepared from purified sulphate leach liquor of red mud.
    Tsakiridis PE; Oustadakis P; Katsiapi A; Perraki M; Agatzini-Leonardou S
    J Hazard Mater; 2011 Oct; 194():42-7. PubMed ID: 21868153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristic, hazard and iron recovery technology of red mud - A critical review.
    Liu X; Han Y; He F; Gao P; Yuan S
    J Hazard Mater; 2021 Oct; 420():126542. PubMed ID: 34265654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.