BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23611984)

  • 21. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli.
    Tanaka N; Nonaka T; Tanabe T; Yoshimoto T; Tsuru D; Mitsui Y
    Biochemistry; 1996 Jun; 35(24):7715-30. PubMed ID: 8672472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3).
    Whitehouse CJ; Yang W; Yorke JA; Rowlatt BC; Strong AJ; Blanford CF; Bell SG; Bartlam M; Wong LL; Rao Z
    Chembiochem; 2010 Dec; 11(18):2549-56. PubMed ID: 21110374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for effector control and redox partner recognition in cytochrome P450.
    Tripathi S; Li H; Poulos TL
    Science; 2013 Jun; 340(6137):1227-30. PubMed ID: 23744947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes.
    Goldsmith-Fischman S; Kuzin A; Edstrom WC; Benach J; Shastry R; Xiao R; Acton TB; Honig B; Montelione GT; Hunt JF
    J Mol Biol; 2004 Nov; 344(2):549-65. PubMed ID: 15522304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the residues in the helix F/G loop important to catalytic function of membrane-bound prostacyclin synthase.
    Deng H; Wu J; So SP; Ruan KH
    Biochemistry; 2003 May; 42(19):5609-17. PubMed ID: 12741817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel.
    Haines DC; Chen B; Tomchick DR; Bondlela M; Hegde A; Machius M; Peterson JA
    Biochemistry; 2008 Mar; 47(12):3662-70. PubMed ID: 18298086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The refined crystallographic structure of a DD-peptidase penicillin-target enzyme at 1.6 A resolution.
    Kelly JA; Kuzin AP
    J Mol Biol; 1995 Nov; 254(2):223-36. PubMed ID: 7490745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional analysis of HtrA1 and its subdomains.
    Eigenbrot C; Ultsch M; Lipari MT; Moran P; Lin SJ; Ganesan R; Quan C; Tom J; Sandoval W; van Lookeren Campagne M; Kirchhofer D
    Structure; 2012 Jun; 20(6):1040-50. PubMed ID: 22578544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural analysis of SgvP involved in carbon-sulfur bond formation during griseoviridin biosynthesis.
    Li Q; Chen Y; Zhang G; Zhang H
    FEBS Lett; 2017 May; 591(9):1295-1304. PubMed ID: 28380253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity.
    Kallio P; Sultana A; Niemi J; Mäntsälä P; Schneider G
    J Mol Biol; 2006 Mar; 357(1):210-20. PubMed ID: 16414075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structures of salicylate 1,2-dioxygenase-substrates adducts: A step towards the comprehension of the structural basis for substrate selection in class III ring cleaving dioxygenases.
    Ferraroni M; Matera I; Steimer L; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Struct Biol; 2012 Feb; 177(2):431-8. PubMed ID: 22155290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different binding modes of two flaviolin substrate molecules in cytochrome P450 158A1 (CYP158A1) compared to CYP158A2.
    Zhao B; Lamb DC; Lei L; Kelly SL; Yuan H; Hachey DL; Waterman MR
    Biochemistry; 2007 Jul; 46(30):8725-33. PubMed ID: 17614370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular cloning and structural analysis of quinohemoprotein alcohol dehydrogenase ADH-IIG from Pseudomonas putida HK5.
    Toyama H; Chen ZW; Fukumoto M; Adachi O; Matsushita K; Mathews FS
    J Mol Biol; 2005 Sep; 352(1):91-104. PubMed ID: 16061256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis.
    Xu LH; Fushinobu S; Takamatsu S; Wakagi T; Ikeda H; Shoun H
    J Biol Chem; 2010 May; 285(22):16844-53. PubMed ID: 20375018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of SnoaL2 and AclR: two putative hydroxylases in the biosynthesis of aromatic polyketide antibiotics.
    Beinker P; Lohkamp B; Peltonen T; Niemi J; Mäntsälä P; Schneider G
    J Mol Biol; 2006 Jun; 359(3):728-40. PubMed ID: 16650858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of cytochrome P450 MoxA from Nonomuraea recticatena (CYP105).
    Yasutake Y; Imoto N; Fujii Y; Fujii T; Arisawa A; Tamura T
    Biochem Biophys Res Commun; 2007 Oct; 361(4):876-82. PubMed ID: 17679139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures.
    Liao SJ; Yang CY; Chin KH; Wang AH; Chou SH
    J Mol Biol; 2009 Jul; 390(5):951-66. PubMed ID: 19477183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding.
    Chen CK; Lee GC; Ko TP; Guo RT; Huang LM; Liu HJ; Ho YF; Shaw JF; Wang AH
    J Mol Biol; 2009 Jul; 390(4):672-85. PubMed ID: 19447113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants.
    Morikawa K; Ariyoshi M; Vassylyev DG; Matsumoto O; Katayanagi K; Ohtsuka E
    J Mol Biol; 1995 Jun; 249(2):360-75. PubMed ID: 7783199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional analysis and crystallographic structure of clotrimazole bound OleP, a cytochrome P450 epoxidase from Streptomyces antibioticus involved in oleandomycin biosynthesis.
    Montemiglio LC; Parisi G; Scaglione A; Sciara G; Savino C; Vallone B
    Biochim Biophys Acta; 2016 Mar; 1860(3):465-75. PubMed ID: 26475642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.