These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A potential space-making role in cell wall biogenesis for SltB1and DacB revealed by a beta-lactamase induction phenotype in Gyger J; Torrens G; Cava F; Bernhardt TG; Fumeaux C mBio; 2024 Jul; 15(7):e0141924. PubMed ID: 38920394 [TBL] [Abstract][Full Text] [Related]
3. Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure. Ropy A; Cabot G; Sánchez-Diener I; Aguilera C; Moya B; Ayala JA; Oliver A Antimicrob Agents Chemother; 2015 Jul; 59(7):3925-34. PubMed ID: 25896695 [TBL] [Abstract][Full Text] [Related]
4. Loss of membrane-bound lytic transglycosylases increases outer membrane permeability and β-lactam sensitivity in Pseudomonas aeruginosa. Lamers RP; Nguyen UT; Nguyen Y; Buensuceso RN; Burrows LL Microbiologyopen; 2015 Dec; 4(6):879-95. PubMed ID: 26374494 [TBL] [Abstract][Full Text] [Related]
5. In vivo functional and molecular characterization of the Penicillin-Binding Protein 4 (DacB) of Pseudomonas aeruginosa. Aguilera Rossi CG; Gómez-Puertas P; Ayala Serrano JA BMC Microbiol; 2016 Oct; 16(1):234. PubMed ID: 27716106 [TBL] [Abstract][Full Text] [Related]
6. NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa. Zamorano L; Reeve TM; Deng L; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A Antimicrob Agents Chemother; 2010 Sep; 54(9):3557-63. PubMed ID: 20566764 [TBL] [Abstract][Full Text] [Related]
8. In Vivo Validation of Peptidoglycan Recycling as a Target to Disable AmpC-Mediated Resistance and Reduce Virulence Enhancing the Cell-Wall-Targeting Immunity. Torrens G; Sánchez-Diener I; Jordana-Lluch E; Barceló IM; Zamorano L; Juan C; Oliver A J Infect Dis; 2019 Oct; 220(11):1729-1737. PubMed ID: 31325363 [TBL] [Abstract][Full Text] [Related]
9. Identification of MupP as a New Peptidoglycan Recycling Factor and Antibiotic Resistance Determinant in Fumeaux C; Bernhardt TG mBio; 2017 Mar; 8(2):. PubMed ID: 28351916 [TBL] [Abstract][Full Text] [Related]
10. AmpG inactivation restores susceptibility of pan-beta-lactam-resistant Pseudomonas aeruginosa clinical strains. Zamorano L; Reeve TM; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A Antimicrob Agents Chemother; 2011 May; 55(5):1990-6. PubMed ID: 21357303 [TBL] [Abstract][Full Text] [Related]
11. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Moya B; Zamorano L; Juan C; Pérez JL; Ge Y; Oliver A Antimicrob Agents Chemother; 2010 Mar; 54(3):1213-7. PubMed ID: 20086158 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression. Langaee TY; Gagnon L; Huletsky A Antimicrob Agents Chemother; 2000 Mar; 44(3):583-9. PubMed ID: 10681322 [TBL] [Abstract][Full Text] [Related]
13. Identification of Drug Resistance Determinants in a Clinical Isolate of Pseudomonas aeruginosa by High-Density Transposon Mutagenesis. Sonnabend MS; Klein K; Beier S; Angelov A; Kluj R; Mayer C; Groß C; Hofmeister K; Beuttner A; Willmann M; Peter S; Oberhettinger P; Schmidt A; Autenrieth IB; Schütz M; Bohn E Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31818817 [TBL] [Abstract][Full Text] [Related]
14. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Okamoto K; Gotoh N; Nishino T Antimicrob Agents Chemother; 2001 Jul; 45(7):1964-71. PubMed ID: 11408209 [TBL] [Abstract][Full Text] [Related]
16. Impact of Peptidoglycan Recycling Blockade and Expression of Horizontally Acquired β-Lactamases on Pseudomonas aeruginosa Virulence. Barceló IM; Torrens G; Escobar-Salom M; Jordana-Lluch E; Capó-Bauzá MM; Ramón-Pallín C; García-Cuaresma D; Fraile-Ribot PA; Mulet X; Oliver A; Juan C Microbiol Spectr; 2022 Feb; 10(1):e0201921. PubMed ID: 35171032 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa. Asgarali A; Stubbs KA; Oliver A; Vocadlo DJ; Mark BL Antimicrob Agents Chemother; 2009 Jun; 53(6):2274-82. PubMed ID: 19273679 [TBL] [Abstract][Full Text] [Related]
18. Penicillin-binding protein 3 is a common adaptive target among Pseudomonas aeruginosa isolates from adult cystic fibrosis patients treated with β-lactams. Clark ST; Sinha U; Zhang Y; Wang PW; Donaldson SL; Coburn B; Waters VJ; Yau YCW; Tullis DE; Guttman DS; Hwang DM Int J Antimicrob Agents; 2019 May; 53(5):620-628. PubMed ID: 30664925 [TBL] [Abstract][Full Text] [Related]
19. The sentinel role of peptidoglycan recycling in the β-lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa. Fisher JF; Mobashery S Bioorg Chem; 2014 Oct; 56():41-8. PubMed ID: 24955547 [TBL] [Abstract][Full Text] [Related]
20. Molecular Basis of AmpC β-Lactamase Induction by Avibactam in López-Argüello S; Montaner M; Oliver A; Moya B Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]