These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23612291)

  • 1. Multipolar radiation of quantum emitters with nanowire optical antennas.
    Curto AG; Taminiau TH; Volpe G; Kreuzer MP; Quidant R; van Hulst NF
    Nat Commun; 2013; 4():1750. PubMed ID: 23612291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Optical Mapping of the Position of Quantum Dots Embedded in a Nanowire Antenna.
    Fons R; Osterkryger AD; Stepanov P; Gautier E; Bleuse J; Gérard JM; Gregersen N; Claudon J
    Nano Lett; 2018 Oct; 18(10):6434-6440. PubMed ID: 30185050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unidirectional emission of a quantum dot coupled to a nanoantenna.
    Curto AG; Volpe G; Taminiau TH; Kreuzer MP; Quidant R; van Hulst NF
    Science; 2010 Aug; 329(5994):930-3. PubMed ID: 20724630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: beyond the dipole approximation.
    Rukhlenko ID; Handapangoda D; Premaratne M; Fedorov AV; Baranov AV; Jagadish C
    Opt Express; 2009 Sep; 17(20):17570-81. PubMed ID: 19907541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Metamaterials with Magnetic Response at Optical Frequencies.
    Alaee R; Gurlek B; Albooyeh M; Martín-Cano D; Sandoghdar V
    Phys Rev Lett; 2020 Aug; 125(6):063601. PubMed ID: 32845673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multipolar interference for directed light emission.
    Hancu IM; Curto AG; Castro-López M; Kuttge M; van Hulst NF
    Nano Lett; 2014 Jan; 14(1):166-71. PubMed ID: 24279805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.
    Li Q; Pan D; Wei H; Xu H
    Nano Lett; 2018 Mar; 18(3):2009-2015. PubMed ID: 29485884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.
    Decker M; Staude I; Shishkin II; Samusev KB; Parkinson P; Sreenivasan VK; Minovich A; Miroshnichenko AE; Zvyagin A; Jagadish C; Neshev DN; Kivshar YS
    Nat Commun; 2013; 4():2949. PubMed ID: 24335832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monolithically integrated single quantum dots coupled to bowtie nanoantennas.
    Lyamkina AA; Schraml K; Regler A; Schalk M; Bakarov AK; Toropov AI; Moshchenko SP; Kaniber M
    Opt Express; 2016 Dec; 24(25):28936-28944. PubMed ID: 27958558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling Single Giant Nanocrystal Quantum Dots to the Fundamental Mode of Patch Nanoantennas through Fringe Field.
    Wang F; Karan NS; Minh Nguyen H; Ghosh Y; Hollingsworth JA; Htoon H
    Sci Rep; 2015 Sep; 5():14313. PubMed ID: 26394763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Magnetic Light Emission with All-Dielectric Optical Nanoantennas.
    Sanz-Paz M; Ernandes C; Esparza JU; Burr GW; van Hulst NF; Maitre A; Aigouy L; Gacoin T; Bonod N; Garcia-Parajo MF; Bidault S; Mivelle M
    Nano Lett; 2018 Jun; 18(6):3481-3487. PubMed ID: 29701991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deterministic radiative coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots.
    Jeannin M; Rueda-Fonseca P; Bellet-Amalric E; Kheng K; Nogues G
    Nanotechnology; 2016 May; 27(18):185201. PubMed ID: 27001959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unidirectional emission in an all-dielectric nanoantenna.
    Feng T; Zhang W; Liang Z; Xu Y
    J Phys Condens Matter; 2018 Mar; 30(12):124002. PubMed ID: 29376841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires.
    Gruber C; Trügler A; Hohenau A; Hohenester U; Krenn JR
    Nano Lett; 2013 Sep; 13(9):4257-62. PubMed ID: 23968490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.
    Thyrrestrup H; Kiršanskė G; Le Jeannic H; Pregnolato T; Zhai L; Raahauge L; Midolo L; Rotenberg N; Javadi A; Schott R; Wieck AD; Ludwig A; Löbl MC; Söllner I; Warburton RJ; Lodahl P
    Nano Lett; 2018 Mar; 18(3):1801-1806. PubMed ID: 29494160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling spontaneous emission with plasmonic optical patch antennas.
    Belacel C; Habert B; Bigourdan F; Marquier F; Hugonin JP; de Vasconcellos SM; Lafosse X; Coolen L; Schwob C; Javaux C; Dubertret B; Greffet JJ; Senellart P; Maitre A
    Nano Lett; 2013 Apr; 13(4):1516-21. PubMed ID: 23461679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanowire Quantum Dots Tuned to Atomic Resonances.
    Leandro L; Gunnarsson CP; Reznik R; Jöns KD; Shtrom I; Khrebtov A; Kasama T; Zwiller V; Cirlin G; Akopian N
    Nano Lett; 2018 Nov; 18(11):7217-7221. PubMed ID: 30336054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transverse Kerker Effect for Dipole Sources.
    Qin F; Zhang Z; Zheng K; Xu Y; Fu S; Wang Y; Qin Y
    Phys Rev Lett; 2022 May; 128(19):193901. PubMed ID: 35622034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.