These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 23612368)
21. Exploring fish bioassay of textile dye wastewaters and their selected constituents in terms of mortality and erythrocyte disorders. Sharma S; Sharma S; Singh PK; Swami RC; Sharma KP Bull Environ Contam Toxicol; 2009 Jul; 83(1):29-34. PubMed ID: 19322506 [TBL] [Abstract][Full Text] [Related]
22. Comparative toxicity of nine metals to two Malaysian aquatic dipterian larvae with reference to temperature variation. Vedamanikam VJ; Shazilli NA Bull Environ Contam Toxicol; 2008 Jun; 80(6):516-20. PubMed ID: 18414763 [TBL] [Abstract][Full Text] [Related]
23. A novel integrated biosensor based on co-immobilizing the mediator and microorganism for water biotoxicity assay. Li J; Yu Y; Qian J; Wang Y; Zhang J; Zhi J Analyst; 2014 Jun; 139(11):2806-12. PubMed ID: 24728093 [TBL] [Abstract][Full Text] [Related]
24. A mediator-free whole-cell electrochemical biosensing system for sensitive assessment of heavy metal toxicity in water. Yang Y; Fang Z; Yu YY; Wang YZ; Naraginti S; Yong YC Water Sci Technol; 2019 Mar; 79(6):1071-1080. PubMed ID: 31070587 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of the toxicity of several heavy metals by a fluorescent bacterial bioassay. Mariscal A; García A; Carnero M; Gómez J; Pinedo A; Fernández-Crehuet J J Appl Toxicol; 1995; 15(2):103-7. PubMed ID: 7782554 [TBL] [Abstract][Full Text] [Related]
26. Winter third- to fourth-instar larvae of Chironomus plumosus as bioassay tools for assessment of acute toxicity of metals and their binary combinations. Fargasová A Ecotoxicol Environ Saf; 2001 Jan; 48(1):1-5. PubMed ID: 11161670 [TBL] [Abstract][Full Text] [Related]
27. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. Karlsson K; Viklander M; Scholes L; Revitt M J Hazard Mater; 2010 Jun; 178(1-3):612-8. PubMed ID: 20153579 [TBL] [Abstract][Full Text] [Related]
28. LuxCDABE--transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri. Kurvet I; Ivask A; Bondarenko O; Sihtmäe M; Kahru A Sensors (Basel); 2011; 11(8):7865-78. PubMed ID: 22164050 [TBL] [Abstract][Full Text] [Related]
29. A new P. putida instrumental toxicity bioassay. Figueredo F; Abrevaya XC; Cortón E Environ Monit Assess; 2015 May; 187(5):294. PubMed ID: 25910719 [TBL] [Abstract][Full Text] [Related]
30. Determination of heavy metal toxicity by using a micro-droplet hydrodynamic voltammetry for microalgal bioassay based on alkaline phosphatase. Islam MS; Sazawa K; Hata N; Sugawara K; Kuramitz H Chemosphere; 2017 Dec; 188():337-344. PubMed ID: 28888859 [TBL] [Abstract][Full Text] [Related]
31. A novel gas production bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) for the toxicity assessment of heavy metals contaminated water. Ashun E; Kang W; Thapa BS; Gurung A; Rahimnejad M; Jang M; Jeon BH; Kim JR; Oh SE Chemosphere; 2022 Sep; 303(Pt 1):134902. PubMed ID: 35561773 [TBL] [Abstract][Full Text] [Related]
32. [Use of dinoflagellates as a metal toxicity assessment tool in aquatic system]. Yuan LJ; He MC Huan Jing Ke Xue; 2009 Oct; 30(10):2918-23. PubMed ID: 19968107 [TBL] [Abstract][Full Text] [Related]
33. Temperature-based rapid toxicity test using Ceriodaphnia dubia. Jun BH; Lee SI; Ryu HD; Kim YJ Water Sci Technol; 2006; 53(4-5):347-55. PubMed ID: 16722086 [TBL] [Abstract][Full Text] [Related]
35. Validation of an in vitro cytotoxicity test for four heavy metals using cell lines derived from a green sea turtle (Chelonia mydas). Tan F; Wang M; Wang W; Alonso Aguirre A; Lu Y Cell Biol Toxicol; 2010 Jun; 26(3):255-63. PubMed ID: 19629729 [TBL] [Abstract][Full Text] [Related]
36. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics. Pujol-Vila F; Vigués N; Díaz-González M; Muñoz-Berbel X; Mas J Biosens Bioelectron; 2015 May; 67():272-9. PubMed ID: 25172027 [TBL] [Abstract][Full Text] [Related]
37. Validation of plant based bioassays for the toxicity testing of Indian waters. Siddiqui AH; Tabrez S; Ahmad M Environ Monit Assess; 2011 Aug; 179(1-4):241-53. PubMed ID: 21042847 [TBL] [Abstract][Full Text] [Related]
38. A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for Environmental Risk Assessment of toxic effluents. Barata C; Alañon P; Gutierrez-Alonso S; Riva MC; Fernández C; Tarazona JV Sci Total Environ; 2008 Nov; 405(1-3):78-86. PubMed ID: 18657849 [TBL] [Abstract][Full Text] [Related]
39. Development of a novel biotoxicity screening assay for analytical use. Plata MR; Contento AM; Villaseñor MJ; Cabezas ML; Ríos A Chemosphere; 2009 Aug; 76(7):959-66. PubMed ID: 19439343 [TBL] [Abstract][Full Text] [Related]
40. Acrosome reaction of sperm in the mud crab Scylla serrata as a sensitive toxicity test for metal exposures. Zhang Z; Cheng H; Wang Y; Wang S; Xie F; Li S Arch Environ Contam Toxicol; 2010 Jan; 58(1):96-104. PubMed ID: 19399549 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]