BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 23612938)

  • 1. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes.
    Stork S; Lau J; Moog D; Maier UG
    Protoplasma; 2013 Oct; 250(5):1013-23. PubMed ID: 23612938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane.
    Felsner G; Sommer MS; Gruenheit N; Hempel F; Moog D; Zauner S; Martin W; Maier UG
    Genome Biol Evol; 2011; 3():140-50. PubMed ID: 21081314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation.
    Stork S; Moog D; Przyborski JM; Wilhelmi I; Zauner S; Maier UG
    Eukaryot Cell; 2012 Dec; 11(12):1472-81. PubMed ID: 23042132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms.
    Hempel F; Bullmann L; Lau J; Zauner S; Maier UG
    Mol Biol Evol; 2009 Aug; 26(8):1781-90. PubMed ID: 19377060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal lysines are essential for protein translocation via a modified ERAD system in complex plastids.
    Lau JB; Stork S; Moog D; Sommer MS; Maier UG
    Mol Microbiol; 2015 May; 96(3):609-20. PubMed ID: 25644868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms.
    Hempel F; Felsner G; Maier UG
    Mol Microbiol; 2010 May; 76(3):793-801. PubMed ID: 20345650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Der1-mediated preprotein import into the periplastid compartment of chromalveolates?
    Sommer MS; Gould SB; Lehmann P; Gruber A; Przyborski JM; Maier UG
    Mol Biol Evol; 2007 Apr; 24(4):918-28. PubMed ID: 17244602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates.
    Petersen J; Teich R; Brinkmann H; Cerff R
    J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids.
    Sturm S; Engelken J; Gruber A; Vugrinec S; Kroth PG; Adamska I; Lavaud J
    BMC Evol Biol; 2013 Jul; 13():159. PubMed ID: 23899289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis.
    Bodył A
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):201-222. PubMed ID: 28544184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-protein interactions indicate composition of a 480 kDa SELMA complex in the second outermost membrane of diatom complex plastids.
    Lau JB; Stork S; Moog D; Schulz J; Maier UG
    Mol Microbiol; 2016 Apr; 100(1):76-89. PubMed ID: 26712034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga.
    Hirakawa Y; Burki F; Keeling PJ
    Eukaryot Cell; 2012 Mar; 11(3):324-33. PubMed ID: 22267775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events.
    Füssy Z; Oborník M
    Methods Mol Biol; 2024; 2776():21-41. PubMed ID: 38502496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein import and the origin of red complex plastids.
    Gould SB; Maier UG; Martin WF
    Curr Biol; 2015 Jun; 25(12):R515-21. PubMed ID: 26079086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages).
    Petersen J; Ludewig AK; Michael V; Bunk B; Jarek M; Baurain D; Brinkmann H
    Genome Biol Evol; 2014 Mar; 6(3):666-84. PubMed ID: 24572015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability - review.
    Vesteg M; Vacula R; Krajcovic J
    Folia Microbiol (Praha); 2009; 54(4):303-21. PubMed ID: 19826918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary origin of a preprotein translocase in the periplastid membrane of complex plastids: a hypothesis.
    Bodył A
    Plant Biol (Stuttg); 2004 Sep; 6(5):513-8. PubMed ID: 15375721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Plastid Protein That Evolved from Ubiquitin and Is Required for Apicoplast Protein Import in
    Fellows JD; Cipriano MJ; Agrawal S; Striepen B
    mBio; 2017 Jun; 8(3):. PubMed ID: 28655825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.