BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23612990)

  • 1. The CD4/CD8 lineages: central decisions and peripheral modifications for T lymphocytes.
    Tanaka H; Taniuchi I
    Curr Top Microbiol Immunol; 2014; 373():113-29. PubMed ID: 23612990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transcription factor ThPOK suppresses Runx3 and imposes CD4(+) lineage fate by inducing the SOCS suppressors of cytokine signaling.
    Luckey MA; Kimura MY; Waickman AT; Feigenbaum L; Singer A; Park JH
    Nat Immunol; 2014 Jul; 15(7):638-45. PubMed ID: 24880459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic interplay between ThPOK and Runx in lineage choice of thymocytes.
    Egawa T; Taniuchi I
    Blood Cells Mol Dis; 2009; 43(1):27-9. PubMed ID: 19375362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal control of G1-phase progression is required for Th-POK/Runx3-mediated CD4/8 thymocyte cell fate decision.
    Sato T; Chiba T; Ohno S; Sato C; Sugoh T; Miyashita K; Akatsuka H; Hozumi K; Okada Y; Iida Y; Akatsuka A; Agata Y; Chiba M; Kohu K; Satake M; Tanabe H; Saya H; Habu S
    J Immunol; 2012 Nov; 189(9):4426-36. PubMed ID: 23018457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,3,7,8-Tetrachlorodibenzo-p-dioxin modulates the expression of cKrox and Runx3, transcription regulatory factors controlling the lineage commitment of CD4+CD8+ into CD4 and CD8 thymocytes, respectively.
    Gill BC; Jeon CH; Sung HN; Kim HL; Jin DW; Park JH
    Toxicol Lett; 2008 Aug; 180(3):189-95. PubMed ID: 18602973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Runx and ThPOK: a balancing act to regulate thymocyte lineage commitment.
    Egawa T
    J Cell Biochem; 2009 Aug; 107(6):1037-45. PubMed ID: 19479890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis.
    Woolf E; Xiao C; Fainaru O; Lotem J; Rosen D; Negreanu V; Bernstein Y; Goldenberg D; Brenner O; Berke G; Levanon D; Groner Y
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7731-6. PubMed ID: 12796513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The network of transcription factors that underlie the CD4 versus CD8 lineage decision.
    Naito T; Taniuchi I
    Int Immunol; 2010 Oct; 22(10):791-6. PubMed ID: 20732858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Priming of lineage-specifying genes by Bcl11b is required for lineage choice in post-selection thymocytes.
    Kojo S; Tanaka H; Endo TA; Muroi S; Liu Y; Seo W; Tenno M; Kakugawa K; Naoe Y; Nair K; Moro K; Katsuragi Y; Kanai A; Inaba T; Egawa T; Venkatesh B; Minoda A; Kominami R; Taniuchi I
    Nat Commun; 2017 Sep; 8(1):702. PubMed ID: 28951542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What Happens in the Thymus Does Not Stay in the Thymus: How T Cells Recycle the CD4+-CD8+ Lineage Commitment Transcriptional Circuitry To Control Their Function.
    Vacchio MS; Bosselut R
    J Immunol; 2016 Jun; 196(12):4848-56. PubMed ID: 27260768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thpok-independent repression of Runx3 by Gata3 during CD4+ T-cell differentiation in the thymus.
    Xiong Y; Castro E; Yagi R; Zhu J; Lesourne R; Love PE; Feigenbaum L; Bosselut R
    Eur J Immunol; 2013 Apr; 43(4):918-28. PubMed ID: 23310955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAZR and Runx Factors Synergistically Repress ThPOK during CD8+ T Cell Lineage Development.
    Sakaguchi S; Hainberger D; Tizian C; Tanaka H; Okuda T; Taniuchi I; Ellmeier W
    J Immunol; 2015 Sep; 195(6):2879-87. PubMed ID: 26254341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4(+) T cell fate and interact with Runx3 to silence Cd4 in CD8(+) T cells.
    Steinke FC; Yu S; Zhou X; He B; Yang W; Zhou B; Kawamoto H; Zhu J; Tan K; Xue HH
    Nat Immunol; 2014 Jul; 15(7):646-656. PubMed ID: 24836425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular control of CD4(+) T cell lineage plasticity and integrity.
    Ellmeier W
    Int Immunopharmacol; 2015 Oct; 28(2):813-7. PubMed ID: 25864621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD4+/CD8+ double-positive T cells: more than just a developmental stage?
    Overgaard NH; Jung JW; Steptoe RJ; Wells JW
    J Leukoc Biol; 2015 Jan; 97(1):31-8. PubMed ID: 25360000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lineage re-commitment of CD4CD8αα intraepithelial lymphocytes in the gut.
    Park Y; Moon SJ; Lee SW
    BMB Rep; 2016 Jan; 49(1):11-7. PubMed ID: 26592937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Views on helper/cytotoxic lineage choice from a bottom-up approach.
    Taniuchi I
    Immunol Rev; 2016 May; 271(1):98-113. PubMed ID: 27088909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development.
    Taniuchi I; Osato M; Egawa T; Sunshine MJ; Bae SC; Komori T; Ito Y; Littman DR
    Cell; 2002 Nov; 111(5):621-33. PubMed ID: 12464175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Th-POK and Runx3 in T cell development in human thymoma.
    Tokunaga T; Hayashi A; Kadota Y; Shiono H; Inoue M; Sawabata N; Okumura M
    Autoimmunity; 2009; 42(8):653-60. PubMed ID: 19886737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation in helper versus cytotoxic-lineage decision.
    Taniuchi I
    Curr Opin Immunol; 2009 Apr; 21(2):127-32. PubMed ID: 19361971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.