BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23612994)

  • 21.
    Buel GR; Chen X; Kayode O; Cruz A; Walters KJ
    Biomol NMR Assign; 2023 Jun; 17(1):101-106. PubMed ID: 37022617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of the sulfhydryl groups in proteins with slow hydrogen exchange rates and determination of their proton/deuteron fractionation factors using the deuterium-induced effects on the 13C(beta) NMR signals.
    Takeda M; Jee J; Terauchi T; Kainosho M
    J Am Chem Soc; 2010 May; 132(17):6254-60. PubMed ID: 20384326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unambiguous assignment of NMR protein backbone signals with a time-shared triple-resonance experiment.
    Frueh DP; Arthanari H; Wagner G
    J Biomol NMR; 2005 Nov; 33(3):187-96. PubMed ID: 16331423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles.
    Li DW; Brüschweiler R
    J Biomol NMR; 2012 Nov; 54(3):257-65. PubMed ID: 22972619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assignment strategies for aliphatic protons in the solid-state in randomly protonated proteins.
    Asami S; Reif B
    J Biomol NMR; 2012 Jan; 52(1):31-9. PubMed ID: 22138787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.
    Altheimer BD; Mehta MA
    J Phys Chem A; 2014 Apr; 118(14):2618-28. PubMed ID: 24654604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.
    Wei Q; Chen J; Mi J; Zhang J; Ruan K; Wu J
    Chemistry; 2016 Jul; 22(28):9556-64. PubMed ID: 27276173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indirect use of deuterium in solution NMR studies of protein structure and hydrogen bonding.
    Tugarinov V
    Prog Nucl Magn Reson Spectrosc; 2014 Feb; 77():49-68. PubMed ID: 24411830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
    Feng W; Tejero R; Zimmerman DE; Inouye M; Montelione GT
    Biochemistry; 1998 Aug; 37(31):10881-96. PubMed ID: 9692981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A strategy to obtain backbone resonance assignments of deuterated proteins in the presence of incomplete amide 2H/1H back-exchange.
    Löhr F; Katsemi V; Hartleib J; Günther U; Rüterjans H
    J Biomol NMR; 2003 Apr; 25(4):291-311. PubMed ID: 12766392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fractional enrichment of proteins using [2-(13)C]-glycerol as the carbon source facilitates measurement of excited state 13Cα chemical shifts with improved sensitivity.
    Ahlner A; Andresen C; Khan SN; Kay LE; Lundström P
    J Biomol NMR; 2015 Jul; 62(3):341-51. PubMed ID: 25990019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subunit-specific backbone NMR assignments of a 64 kDa trp repressor/DNA complex: a role for N-terminal residues in tandem binding.
    Shan X; Gardner KH; Muhandiram DR; Kay LE; Arrowsmith CH
    J Biomol NMR; 1998 Apr; 11(3):307-18. PubMed ID: 9691278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Backbone H(N), N, Calpha, C' and Cbeta assignment of the 25 kDa peptide methionine sulfoxide reductase from Erwinia chrysanthemi.
    Béraud S; Chambost JP; Bersch B; Gans P; Barras F; Marion D
    J Biomol NMR; 2001 May; 20(1):97-8. PubMed ID: 11430764
    [No Abstract]   [Full Text] [Related]  

  • 35. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology.
    Shen Y; Bax A
    J Biomol NMR; 2007 Aug; 38(4):289-302. PubMed ID: 17610132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Angular dependence of 1J(Ni,Calphai) and 2J(Ni,Calpha(i-1)) coupling constants measured in J-modulated HSQCs.
    Wirmer J; Schwalbe H
    J Biomol NMR; 2002 May; 23(1):47-55. PubMed ID: 12061717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous measurement of N-H and Calpha-Halpha coupling constants in proteins.
    Pantoja-Uceda D; Santoro J
    Magn Reson Chem; 2010 Jan; 48(1):20-4. PubMed ID: 19856384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein backbone motions viewed by intraresidue and sequential HN-Halpha residual dipolar couplings.
    Vögeli B; Yao L; Bax A
    J Biomol NMR; 2008 May; 41(1):17-28. PubMed ID: 18458825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deuterium spin probes of backbone order in proteins: 2H NMR relaxation study of deuterated carbon alpha sites.
    Sheppard D; Li DW; Brüschweiler R; Tugarinov V
    J Am Chem Soc; 2009 Nov; 131(43):15853-65. PubMed ID: 19821582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2+ coordination to backbone carbonyl oxygen atoms in calmodulin and other EF-hand proteins: 15N chemical shifts as probes for monitoring individual-site Ca2+ coordination.
    Biekofsky RR; Martin SR; Browne JP; Bayley PM; Feeney J
    Biochemistry; 1998 May; 37(20):7617-29. PubMed ID: 9585577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.