These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23613194)

  • 1. Breeding new seedless grape by means of in vitro embryo rescue.
    Ji W; Li ZQ; Zhou Q; Yao WK; Wang YJ
    Genet Mol Res; 2013 Mar; 12(1):859-69. PubMed ID: 23613194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breeding for seedless grapes using Chinese wild Vitis spp. II. In vitro embryo rescue and plant development.
    Ji W; Wang Y
    J Sci Food Agric; 2013 Dec; 93(15):3870-5. PubMed ID: 23929583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro embryo rescue culture of F1 progenies from crosses between different ploidy grapes.
    Ji W; Li GR; Luo YX; Ma XH; Wang M; Ren R
    Genet Mol Res; 2015 Dec; 14(4):18616-22. PubMed ID: 26782511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New disease-resistant, seedless grapes are developed using embryo rescue and molecular markers.
    Li S; Li Z; Zhao Y; Zhao J; Luo Q; Wang Y
    3 Biotech; 2020 Jan; 10(1):4. PubMed ID: 31824815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved embryo-rescue protocol for hybrid progeny from seedless
    Li GR; Ji W; Wang G; Zhang JX; Wang YJ
    In Vitro Cell Dev Biol Plant; 2014; 50(1):110-120. PubMed ID: 26316680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The metacaspase gene family of Vitis vinifera L.: characterization and differential expression during ovule abortion in stenospermocarpic seedless grapes.
    Zhang C; Gong P; Wei R; Li S; Zhang X; Yu Y; Wang Y
    Gene; 2013 Oct; 528(2):267-76. PubMed ID: 23845786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and expression analysis reveal the potential role of the HD-Zip gene family in regulation of embryo abortion in grapes (Vitis vinifera L.).
    Li Z; Zhang C; Guo Y; Niu W; Wang Y; Xu Y
    BMC Genomics; 2017 Sep; 18(1):744. PubMed ID: 28934927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis during berry development provides insights into co-regulated and altered gene expression between a seeded wine grape variety and its seedless somatic variant.
    Nwafor CC; Gribaudo I; Schneider A; Wehrens R; Grando MS; Costantini L
    BMC Genomics; 2014 Nov; 15(1):1030. PubMed ID: 25431125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenia and metaxenia in grapes: differences in berry and seed characteristics of maternal grape cv. 'Narince' (Vitis vinifera L.) as influenced by different pollen sources.
    Sabir A
    Plant Biol (Stuttg); 2015 Mar; 17(2):567-73. PubMed ID: 25251333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of GA3 treatment on seed development and seed-related gene expression in grape.
    Cheng C; Xu X; Singer SD; Li J; Zhang H; Gao M; Wang L; Song J; Wang X
    PLoS One; 2013; 8(11):e80044. PubMed ID: 24224035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic ancestry estimation quantifies use of wild species in grape breeding.
    Migicovsky Z; Sawler J; Money D; Eibach R; Miller AJ; Luby JJ; Jamieson AR; Velasco D; von Kintzel S; Warner J; Wührer W; Brown PJ; Myles S
    BMC Genomics; 2016 Jun; 17():478. PubMed ID: 27357509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection.
    Akkurt M; Çakır A; Shidfar M; Çelikkol BP; Söylemezoğlu G
    Genet Mol Res; 2012 Aug; 11(3):2288-94. PubMed ID: 22911598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size.
    Wang L; Hu X; Jiao C; Li Z; Fei Z; Yan X; Liu C; Wang Y; Wang X
    BMC Genomics; 2016 Nov; 17(1):898. PubMed ID: 27829355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L.
    Bergamini C; Cardone MF; Anaclerio A; Perniola R; Pichierri A; Genghi R; Alba V; Forleo LR; Caputo AR; Montemurro C; Blanco A; Antonacci D
    Mol Biotechnol; 2013 Jul; 54(3):1021-30. PubMed ID: 23483354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera.
    Zhang H; Hu Y; Gu B; Cui X; Zhang J
    Plant Cell Rep; 2022 Aug; 41(8):1673-1691. PubMed ID: 35666271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification and expression analyses of the homeobox transcription factor family during ovule development in seedless and seeded grapes.
    Li Y; Zhu Y; Yao J; Zhang S; Wang L; Guo C; van Nocker S; Wang X
    Sci Rep; 2017 Oct; 7(1):12638. PubMed ID: 28974771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ubiquitin extension protein S27a is differentially expressed in developing flower organs of Thompson seedless versus Thompson seeded grape isogenic clones.
    Hanania U; Velcheva M; Sahar N; Flaishman M; Or E; Degani O; Perl A
    Plant Cell Rep; 2009 Jul; 28(7):1033-42. PubMed ID: 19479258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).
    Tang Y; Wang R; Gong P; Li S; Wang Y; Zhang C
    PLoS One; 2016; 11(8):e0160945. PubMed ID: 27551866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extractable amounts of trans-resveratrol in seed and berry skin in Vitis evaluated at the germplasm level.
    Li X; Wu B; Wang L; Li S
    J Agric Food Chem; 2006 Nov; 54(23):8804-11. PubMed ID: 17090126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VvHDZ28 positively regulate salicylic acid biosynthesis during seed abortion in Thompson Seedless.
    Li Z; Jiao Y; Zhang C; Dou M; Weng K; Wang Y; Xu Y
    Plant Biotechnol J; 2021 Sep; 19(9):1824-1838. PubMed ID: 33835678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.