These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 23613433)
1. Using full-cohort data in nested case-control and case-cohort studies by multiple imputation. Keogh RH; White IR Stat Med; 2013 Oct; 32(23):4021-43. PubMed ID: 23613433 [TBL] [Abstract][Full Text] [Related]
2. Multiple imputation of missing data in nested case-control and case-cohort studies. Keogh RH; Seaman SR; Bartlett JW; Wood AM Biometrics; 2018 Dec; 74(4):1438-1449. PubMed ID: 29870056 [TBL] [Abstract][Full Text] [Related]
3. Handling missing data in matched case-control studies using multiple imputation. Seaman SR; Keogh RH Biometrics; 2015 Dec; 71(4):1150-9. PubMed ID: 26237003 [TBL] [Abstract][Full Text] [Related]
4. Multiple imputation analysis of case-cohort studies. Marti H; Chavance M Stat Med; 2011 Jun; 30(13):1595-607. PubMed ID: 21351290 [TBL] [Abstract][Full Text] [Related]
5. Fitting additive hazards models for case-cohort studies: a multiple imputation approach. Jung J; Harel O; Kang S Stat Med; 2016 Jul; 35(17):2975-90. PubMed ID: 26194861 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome. Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860 [TBL] [Abstract][Full Text] [Related]
7. Nested case-control studies: should one break the matching? Borgan Ø; Keogh R Lifetime Data Anal; 2015 Oct; 21(4):517-41. PubMed ID: 25608704 [TBL] [Abstract][Full Text] [Related]
8. Missing data and imputation: a practical illustration in a prognostic study on low back pain. Vergouw D; Heymans MW; van der Windt DA; Foster NE; Dunn KM; van der Horst HE; de Vet HC J Manipulative Physiol Ther; 2012 Jul; 35(6):464-71. PubMed ID: 22964020 [TBL] [Abstract][Full Text] [Related]
9. Missing data approaches in eHealth research: simulation study and a tutorial for nonmathematically inclined researchers. Blankers M; Koeter MW; Schippers GM J Med Internet Res; 2010 Dec; 12(5):e54. PubMed ID: 21169167 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear multiple imputation for continuous covariate within semiparametric Cox model: application to HIV data in Senegal. Mbougua JB; Laurent C; Ndoye I; Delaporte E; Gwet H; Molinari N Stat Med; 2013 Nov; 32(26):4651-65. PubMed ID: 23712767 [TBL] [Abstract][Full Text] [Related]
11. Multiple imputation and analysis for high-dimensional incomplete proteomics data. Yin X; Levy D; Willinger C; Adourian A; Larson MG Stat Med; 2016 Apr; 35(8):1315-26. PubMed ID: 26565662 [TBL] [Abstract][Full Text] [Related]
12. A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates. Qi L; Wang YF; He Y Stat Med; 2010 Nov; 29(25):2592-604. PubMed ID: 20806403 [TBL] [Abstract][Full Text] [Related]
13. Comparison of methods for imputing ordinal data using multivariate normal imputation: a case study of non-linear effects in a large cohort study. Lee KJ; Galati JC; Simpson JA; Carlin JB Stat Med; 2012 Dec; 31(30):4164-74. PubMed ID: 22826110 [TBL] [Abstract][Full Text] [Related]
14. A bias-corrected estimator in multiple imputation for missing data. Tomita H; Fujisawa H; Henmi M Stat Med; 2018 Oct; 37(23):3373-3386. PubMed ID: 29845646 [TBL] [Abstract][Full Text] [Related]
15. Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach. Erler NS; Rizopoulos D; Rosmalen Jv; Jaddoe VW; Franco OH; Lesaffre EM Stat Med; 2016 Jul; 35(17):2955-74. PubMed ID: 27042954 [TBL] [Abstract][Full Text] [Related]
16. Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study. Welch CA; Sabia S; Brunner E; Kivimäki M; Shipley MJ BMC Med Res Methodol; 2018 Aug; 18(1):89. PubMed ID: 30157752 [TBL] [Abstract][Full Text] [Related]
17. A comparison of different methods to handle missing data in the context of propensity score analysis. Choi J; Dekkers OM; le Cessie S Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708 [TBL] [Abstract][Full Text] [Related]
18. Multiple imputation by predictive mean matching in cluster-randomized trials. Bailey BE; Andridge R; Shoben AB BMC Med Res Methodol; 2020 Mar; 20(1):72. PubMed ID: 32228491 [TBL] [Abstract][Full Text] [Related]
19. Imputation of missing values of tumour stage in population-based cancer registration. Eisemann N; Waldmann A; Katalinic A BMC Med Res Methodol; 2011 Sep; 11():129. PubMed ID: 21929796 [TBL] [Abstract][Full Text] [Related]
20. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]