BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23613840)

  • 1. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii.
    Oey M; Ross IL; Stephens E; Steinbeck J; Wolf J; Radzun KA; Kügler J; Ringsmuth AK; Kruse O; Hankamer B
    PLoS One; 2013; 8(4):e61375. PubMed ID: 23613840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion.
    Mussgnug JH; Thomas-Hall S; Rupprecht J; Foo A; Klassen V; McDowall A; Schenk PM; Kruse O; Hankamer B
    Plant Biotechnol J; 2007 Nov; 5(6):802-14. PubMed ID: 17764518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).
    Zhang L; Happe T; Melis A
    Planta; 2002 Feb; 214(4):552-61. PubMed ID: 11925039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the pigment-protein complex LHCBM1 in nonphotochemical quenching in Chlamydomonas reinhardtii.
    Liu X; Nawrocki WJ; Croce R
    Plant Physiol; 2024 Jan; 194(2):936-944. PubMed ID: 37847042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
    Hemschemeier A; Fouchard S; Cournac L; Peltier G; Happe T
    Planta; 2008 Jan; 227(2):397-407. PubMed ID: 17885762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii.
    Jeong J; Baek K; Kirst H; Melis A; Jin E
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):45-55. PubMed ID: 27760300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved photobiological H2 production in engineered green algal cells.
    Kruse O; Rupprecht J; Bader KP; Thomas-Hall S; Schenk PM; Finazzi G; Hankamer B
    J Biol Chem; 2005 Oct; 280(40):34170-7. PubMed ID: 16100118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
    Torzillo G; Scoma A; Faraloni C; Giannelli L
    Crit Rev Biotechnol; 2015; 35(4):485-96. PubMed ID: 24754449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii.
    Beckmann J; Lehr F; Finazzi G; Hankamer B; Posten C; Wobbe L; Kruse O
    J Biotechnol; 2009 Jun; 142(1):70-7. PubMed ID: 19480949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin cell layer cultures of Chlamydomonas reinhardtii L159I-N230Y, pgrl1 and pgr5 mutants perform enhanced hydrogen production at sunlight intensity.
    Nagy V; Podmaniczki A; Vidal-Meireles A; Kuntam S; Herman É; Kovács L; Tóth D; Scoma A; Tóth SZ
    Bioresour Technol; 2021 Aug; 333():125217. PubMed ID: 33951580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment with NaHSO3 greatly enhances photobiological H2 production in the green alga Chlamydomonas reinhardtii.
    Ma W; Chen M; Wang L; Wei L; Wang Q
    Bioresour Technol; 2011 Sep; 102(18):8635-8. PubMed ID: 21489780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
    Melis A
    Planta; 2007 Oct; 226(5):1075-86. PubMed ID: 17721788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii.
    Volgusheva A; Styring S; Mamedov F
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7223-8. PubMed ID: 23589846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae.
    Perozeni F; Stella GR; Ballottari M
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29303960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water oxidation by photosystem II is the primary source of electrons for sustained H
    Kosourov S; Nagy V; Shevela D; Jokel M; Messinger J; Allahverdiyeva Y
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29629-29636. PubMed ID: 33168746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii.
    Nagy V; Vidal-Meireles A; Tengölics R; Rákhely G; Garab G; Kovács L; Tóth SZ
    Plant Cell Environ; 2016 Jul; 39(7):1460-72. PubMed ID: 26714836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen fuel production by transgenic microalgae.
    Melis A; Seibert M; Ghirardi ML
    Adv Exp Med Biol; 2007; 616():110-21. PubMed ID: 18161495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Intensity is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii.
    Wei L; Yi J; Wang L; Huang T; Gao F; Wang Q; Ma W
    Plant Cell Physiol; 2017 Mar; 58(3):451-457. PubMed ID: 28064249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures.
    Kosourov S; Seibert M; Ghirardi ML
    Plant Cell Physiol; 2003 Feb; 44(2):146-55. PubMed ID: 12610217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LHCSR1-dependent fluorescence quenching is mediated by excitation energy transfer from LHCII to photosystem I in
    Kosuge K; Tokutsu R; Kim E; Akimoto S; Yokono M; Ueno Y; Minagawa J
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3722-3727. PubMed ID: 29555769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.