These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23613840)

  • 21. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii.
    Cazzaniga S; Kim M; Bellamoli F; Jeong J; Lee S; Perozeni F; Pompa A; Jin E; Ballottari M
    Plant Cell Environ; 2020 Feb; 43(2):496-509. PubMed ID: 31724187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii.
    Tolleter D; Ghysels B; Alric J; Petroutsos D; Tolstygina I; Krawietz D; Happe T; Auroy P; Adriano JM; Beyly A; Cuiné S; Plet J; Reiter IM; Genty B; Cournac L; Hippler M; Peltier G
    Plant Cell; 2011 Jul; 23(7):2619-30. PubMed ID: 21764992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LHCSR3 is a nonphotochemical quencher of both photosystems in
    Girolomoni L; Cazzaniga S; Pinnola A; Perozeni F; Ballottari M; Bassi R
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4212-4217. PubMed ID: 30782831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic enhancement of pulsed light-induced H
    Li W; Yao Y; Qin H; Fan X; Zhang X; Liu M; Ma W
    J Photochem Photobiol B; 2024 Aug; 257():112962. PubMed ID: 38917720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High light-induced hydrogen peroxide production in Chlamydomonas reinhardtii is increased by high CO2 availability.
    Roach T; Na CS; Krieger-Liszkay A
    Plant J; 2015 Mar; 81(5):759-66. PubMed ID: 25619314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii.
    Nguyen AV; Thomas-Hall SR; Malnoë A; Timmins M; Mussgnug JH; Rupprecht J; Kruse O; Hankamer B; Schenk PM
    Eukaryot Cell; 2008 Nov; 7(11):1965-79. PubMed ID: 18708561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction between the photoprotective protein LHCSR3 and C
    Semchonok DA; Sathish Yadav KN; Xu P; Drop B; Croce R; Boekema EJ
    Biochim Biophys Acta Bioenerg; 2017 May; 1858(5):379-385. PubMed ID: 28257778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased biomass productivity in green algae by tuning non-photochemical quenching.
    Berteotti S; Ballottari M; Bassi R
    Sci Rep; 2016 Feb; 6():21339. PubMed ID: 26888481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.
    Pinto TS; Malcata FX; Arrabaça JD; Silva JM; Spreitzer RJ; Esquível MG
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5635-43. PubMed ID: 23649352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii.
    Hemschemeier A; Happe T
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):39-41. PubMed ID: 15667259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii.
    Tokutsu R; Iwai M; Minagawa J
    J Biol Chem; 2009 Mar; 284(12):7777-82. PubMed ID: 19144643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light.
    Tibiletti T; Auroy P; Peltier G; Caffarri S
    Plant Physiol; 2016 Aug; 171(4):2717-30. PubMed ID: 27329221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii.
    Natali A; Croce R
    PLoS One; 2015; 10(2):e0119211. PubMed ID: 25723534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii.
    Philipps G; Happe T; Hemschemeier A
    Planta; 2012 Apr; 235(4):729-45. PubMed ID: 22020754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures.
    Barera S; Dall'Osto L; Bassi R
    J Biotechnol; 2021 Feb; 328():12-22. PubMed ID: 33434600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii.
    Girolomoni L; Ferrante P; Berteotti S; Giuliano G; Bassi R; Ballottari M
    J Exp Bot; 2017 Jan; 68(3):627-641. PubMed ID: 28007953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii.
    Kodru S; Malavath T; Devadasu E; Nellaepalli S; Stirbet A; Subramanyam R; Govindjee
    Photosynth Res; 2015 Aug; 125(1-2):219-31. PubMed ID: 25663564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-sensitive PSII: a novel approach for sustained photosynthetic hydrogen production.
    Bayro-Kaiser V; Nelson N
    Photosynth Res; 2016 Dec; 130(1-3):113-121. PubMed ID: 26951152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in
    Kubota-Kawai H; Burton-Smith RN; Tokutsu R; Song C; Akimoto S; Yokono M; Ueno Y; Kim E; Watanabe A; Murata K; Minagawa J
    J Biol Chem; 2019 Mar; 294(12):4304-4314. PubMed ID: 30670590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii.
    Tokutsu R; Minagawa J
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):10016-21. PubMed ID: 23716695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.