These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23613994)

  • 21. Predator diversity and density affect levels of predation upon strongly interactive species in temperate rocky reefs.
    Guidetti P
    Oecologia; 2007 Dec; 154(3):513-20. PubMed ID: 17763873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Limpets compensate sea urchin decline and enhance the stability of rocky subtidal barrens.
    Piazzi L; Bulleri F; Ceccherelli G
    Mar Environ Res; 2016 Apr; 115():49-55. PubMed ID: 26874891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles.
    Byrne M; Lamare M; Winter D; Dworjanyn SA; Uthicke S
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20120439. PubMed ID: 23980242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).
    Wolfe K; Dworjanyn SA; Byrne M
    Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Major loss of coralline algal diversity in response to ocean acidification.
    Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM
    Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marine reserves reestablish lost predatory interactions and cause community changes in rocky reefs.
    Guidetti P
    Ecol Appl; 2006 Jun; 16(3):963-76. PubMed ID: 16826995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The key role of the sea urchin Diadema aff. antillarum in controlling macroalgae assemblages throughout the Canary Islands (eastern subtropical Atlantic): an spatio-temporal approach.
    Hernández JC; Clemente S; Sangil C; Brito A
    Mar Environ Res; 2008 Aug; 66(2):259-70. PubMed ID: 18479745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trophic cascades result in large-scale coralline algae loss through differential grazer effects.
    O'Leary JK; McClanahan TR
    Ecology; 2010 Dec; 91(12):3584-97. PubMed ID: 21302830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification.
    García E; Hernández JC; Clemente S
    Mar Environ Res; 2018 Aug; 139():35-45. PubMed ID: 29753493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predation risk of the sea urchin Paracentrotus lividus juveniles in an overfished area reveal system stability mechanisms and restocking challenges.
    Pinna F; Fois N; Mura F; Ruiu A; Ceccherelli G
    PLoS One; 2024; 19(4):e0301143. PubMed ID: 38635595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seagrass meadows as ocean acidification refugia for sea urchin larvae.
    Ravaglioli C; De Marchi L; Giannessi J; Pretti C; Bulleri F
    Sci Total Environ; 2024 Jan; 906():167465. PubMed ID: 37778543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of microplastics and ocean acidification on critical stages of sea urchin (Paracentrotus lividus) early development.
    Bertucci JI; Juez A; Bellas J
    Chemosphere; 2022 Aug; 301():134783. PubMed ID: 35504467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geographic extent and variation of a coral reef trophic cascade.
    McClanahan TR; Muthiga NA
    Ecology; 2016 Jul; 97(7):1862-1872. PubMed ID: 27859162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Community-wide ramifications of an associational refuge on shallow rocky reefs.
    Levenbach S
    Ecology; 2008 Oct; 89(10):2819-28. PubMed ID: 18959319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From Individual Calcifiers to Ecosystem Dynamics: Ocean Acidification Effects on Urchins and Abalone.
    deVries MS; Ly N; Ebner C; Hallisey R
    Integr Comp Biol; 2024 Jul; ():. PubMed ID: 38986515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?
    Collard M; De Ridder C; David B; Dehairs F; Dubois P
    Glob Chang Biol; 2015 Feb; 21(2):605-17. PubMed ID: 25270127
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The challenge of managing the commercial harvesting of the sea urchin
    Farina S; Baroli M; Brundu R; Conforti A; Cucco A; De Falco G; Guala I; Guerzoni S; Massaro G; Quattrocchi G; Romagnoni G; Brambilla W
    PeerJ; 2020; 8():e10093. PubMed ID: 33083138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Community dynamics and ecosystem simplification in a high-CO2 ocean.
    Kroeker KJ; Gambi MC; Micheli F
    Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12721-6. PubMed ID: 23836638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sea urchin repelling Tannin- Fe
    Kim S; Jung SM; Jung S; Shin HW; Hwang DS
    Chemosphere; 2021 Jan; 263():128276. PubMed ID: 33297220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Limited differences in fish and benthic communities and possible cascading effects inside and outside a protected marine area in Sagres (SW Portugal).
    Gil Fernández C; Paulo D; Serrão EA; Engelen AH
    Mar Environ Res; 2016 Mar; 114():12-23. PubMed ID: 26741737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.