These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 23614285)
1. Matrix type transdermal therapeutic system containing captopril: formulation optimization, in vitro and ex vivo characterization. Kerimoğlu O; Keskin E; Dortunç B; Anah S Acta Pol Pharm; 2013; 70(2):291-300. PubMed ID: 23614285 [TBL] [Abstract][Full Text] [Related]
2. Novel biomaterial for transdermal application: in vitro and in vivo characterization. Mundada AS; Avari JG Drug Deliv; 2011 Aug; 18(6):424-31. PubMed ID: 21554152 [TBL] [Abstract][Full Text] [Related]
3. PHARMACODYNAMICAL EVALUATION OF MATRIX TYPE TRANSDERMAL THERAPEUTIC SYSTEMS CONTAINING CAPTOPRIL. Kerımoğlu O; Şahbaz S; Şehırlı Ö; Ozdemır ZN; Çetınel Ş; Dortunç B; Şener G Acta Pol Pharm; 2015; 72(4):799-806. PubMed ID: 26647638 [TBL] [Abstract][Full Text] [Related]
4. Preparation of a matrix type multiple-unit gastro retentive floating drug delivery system for captopril based on gas formation technique: in vitro evaluation. Meka L; Kesavan B; Chinnala KM; Vobalaboina V; Yamsani MR AAPS PharmSciTech; 2008; 9(2):612-9. PubMed ID: 18459051 [TBL] [Abstract][Full Text] [Related]
5. Formulation design and in vitro ex vivo evaluation of transdermal patches of Cinnarizine. Yamsani VV; Mudulaghar MK; Afreen S; Wajid S; Ravula SK; Babelghaith SD Pak J Pharm Sci; 2017 Nov; 30(6):2075-2083. PubMed ID: 29175776 [TBL] [Abstract][Full Text] [Related]
6. Transdermal therapeutic system of isradipine: effect of hydrophilic and hydrophobic matrix on in vitro and ex vivo characteristics. Tirunagari M; Jangala VR; Khagga M; Gannu R Arch Pharm Res; 2010 Jul; 33(7):1025-33. PubMed ID: 20661712 [TBL] [Abstract][Full Text] [Related]
7. Modulation of drug release by utilizing pH-independent matrix system comprising water soluble drug verapamil hydrochloride. Baviskar D; Sharma R; Jain D Pak J Pharm Sci; 2013 Jan; 26(1):137-44. PubMed ID: 23261739 [TBL] [Abstract][Full Text] [Related]
8. Percutaneous absorption of captopril from hydrophilic cellulose derivatives through excised rabbit skin and human skin. Wu PC; Huang YB; Fang JY; Tsai YH Drug Dev Ind Pharm; 1998 Feb; 24(2):179-82. PubMed ID: 15605449 [TBL] [Abstract][Full Text] [Related]
9. The use of the SeDeM diagram expert system for the formulation of Captopril SR matrix tablets by direct compression. Saurí J; Millán D; Suñé-Negre JM; Pérez-Lozano P; Sarrate R; Fàbregas A; Carrillo C; Miñarro M; Ticó JR; García-Montoya E Int J Pharm; 2014 Jan; 461(1-2):38-45. PubMed ID: 24284019 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of crystallization in drug-in-adhesive-type transdermal patches. Jain P; Banga AK Int J Pharm; 2010 Jul; 394(1-2):68-74. PubMed ID: 20438819 [TBL] [Abstract][Full Text] [Related]
11. Formulation and characterization of a captopril ethyl ester drug-in-adhesive-type patch for percutaneous absorption. Gullick DR; Pugh WJ; Ingram MJ; Cox PA; Moss GP Drug Dev Ind Pharm; 2010 Aug; 36(8):926-32. PubMed ID: 20184419 [TBL] [Abstract][Full Text] [Related]
12. Stability of an alternative extemporaneous captopril fast-dispersing tablet formulation versus an extemporaneous oral liquid formulation. Pabari RM; McDermott C; Barlow J; Ramtoola Z Clin Ther; 2012 Nov; 34(11):2221-9. PubMed ID: 23149007 [TBL] [Abstract][Full Text] [Related]
13. Permeability and swelling studies on free films containing inulin in combination with different polymethacrylates aimed for colonic drug delivery. Akhgari A; Farahmand F; Afrasiabi Garekani H; Sadeghi F; Vandamme TF Eur J Pharm Sci; 2006 Jul; 28(4):307-14. PubMed ID: 16713201 [TBL] [Abstract][Full Text] [Related]
14. Formulation development, in vitro and in vivo evaluation of membrane controlled transdermal systems of glibenclamide. Mutalik S; Udupa N J Pharm Pharm Sci; 2005 Jan; 8(1):26-38. PubMed ID: 15946595 [TBL] [Abstract][Full Text] [Related]
15. PREPARATION, IN VITRO AND IN VIVO CHARACTERIZATION OF HYDROPHOBIC PATCHES OF A HIGHLY WATER SOLUBLE DRUG FOR PROLONGED PLASMA HALF LIFE: EFFECT OF PERMEATION ENHANCERS. Yaqoob A; Ahmad M; Mahmood A; Sarfraz RM Acta Pol Pharm; 2016 Nov; 73(6):1639-1648. PubMed ID: 29634120 [TBL] [Abstract][Full Text] [Related]
16. Influence of the Component Excipients on the Quality and Functionality of a Transdermal Film Formulation. Saoji SD; Atram SC; Dhore PW; Deole PS; Raut NA; Dave VS AAPS PharmSciTech; 2015 Dec; 16(6):1344-56. PubMed ID: 25922089 [TBL] [Abstract][Full Text] [Related]
17. Preparation and in vitro dissolution profile of zidovudine loaded microspheres made of Eudragit RS 100, RL 100 and their combinations. Nath B; Nath LK; Kumar P Acta Pol Pharm; 2011; 68(3):409-15. PubMed ID: 21648196 [TBL] [Abstract][Full Text] [Related]
18. Development of nitrendipine transdermal patches: in vitro and ex vivo characterization. Gannu R; Vishnu YV; Kishan V; Rao YM Curr Drug Deliv; 2007 Jan; 4(1):69-76. PubMed ID: 17269919 [TBL] [Abstract][Full Text] [Related]
19. Hot melt extruded transdermal films based on amorphous solid dispersions in Eudragit RS PO: The inclusion of hydrophilic additives to develop moisture-activated release systems. Albarahmieh E; Qi S; Craig DQM Int J Pharm; 2016 Nov; 514(1):270-281. PubMed ID: 27863672 [TBL] [Abstract][Full Text] [Related]
20. Design and development of insulin emulgel formulation for transdermal drug delivery and its evaluation. Akram M; Naqvi SB; Khan A Pak J Pharm Sci; 2013 Mar; 26(2):323-32. PubMed ID: 23455203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]