These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 23614434)

  • 1. Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals.
    Raghunath P; Huang WF; Lin MC
    J Chem Phys; 2013 Apr; 138(15):154705. PubMed ID: 23614434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen.
    Srinivasadesikan V; Raghunath P; Lin MC
    J Mol Model; 2015 Jun; 21(6):142. PubMed ID: 25966674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen interaction with the anatase TiO2(101) surface.
    Aschauer U; Selloni A
    Phys Chem Chem Phys; 2012 Dec; 14(48):16595-602. PubMed ID: 22930163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101).
    Cheng H; Selloni A
    J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation.
    Lu J; Dai Y; Jin H; Huang B
    Phys Chem Chem Phys; 2011 Oct; 13(40):18063-8. PubMed ID: 21915412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen generation by the reaction of H2O with Al2O3-based materials: a computational analysis.
    Lu YH; Chen HT
    Phys Chem Chem Phys; 2015 Mar; 17(10):6834-43. PubMed ID: 25669173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2.
    Navas J; Sánchez-Coronilla A; Aguilar T; Hernández NC; de los Santos DM; Sánchez-Márquez J; Zorrilla D; Fernández-Lorenzo C; Alcántara R; Martín-Calleja J
    Phys Chem Chem Phys; 2014 Feb; 16(8):3835-45. PubMed ID: 24434807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen activation, diffusion, and clustering on CeO₂(111): a DFT+U study.
    Fernández-Torre D; Carrasco J; Ganduglia-Pirovano MV; Pérez R
    J Chem Phys; 2014 Jul; 141(1):014703. PubMed ID: 25005299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 adsorption on TiO2(101) anatase: a dispersion-corrected density functional theory study.
    Sorescu DC; Al-Saidi WA; Jordan KD
    J Chem Phys; 2011 Sep; 135(12):124701. PubMed ID: 21974546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical calculations of CH4 and H2 associative desorption from Ni(111): could subsurface hydrogen play an important role?
    Henkelman G; Arnaldsson A; Jónsson H
    J Chem Phys; 2006 Jan; 124(4):044706. PubMed ID: 16460199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study on the reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces.
    Huang WF; Raghunath P; Lin MC
    J Comput Chem; 2011 Apr; 32(6):1065-81. PubMed ID: 21387334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A DFT + U study of acetylene selective hydrogenation over anatase supported PdaAgb (a + b = 4) cluster.
    Meng LD; Wang GC
    Phys Chem Chem Phys; 2014 Sep; 16(33):17541-50. PubMed ID: 25026216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O2 adsorption and dissociation on an anatase (101) surface with a subsurface Ti interstitial.
    Liu L; Liu Q; Xiao W; Pan C; Wang Z
    Phys Chem Chem Phys; 2016 Feb; 18(6):4569-76. PubMed ID: 26795028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations.
    Di Valentin C; Pacchioni G; Selloni A; Livraghi S; Giamello E
    J Phys Chem B; 2005 Jun; 109(23):11414-9. PubMed ID: 16852395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural evolution of titanium dioxide during reduction in high-pressure hydrogen.
    Selcuk S; Zhao X; Selloni A
    Nat Mater; 2018 Oct; 17(10):923-928. PubMed ID: 30013054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of H2 and O2 production from water splitting by small (MO2)n clusters (M = Ti, Zr, Hf).
    Fang Z; Dixon DA
    J Phys Chem A; 2013 Apr; 117(16):3539-55. PubMed ID: 23544659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.