These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23614452)

  • 1. Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds.
    Arabi N; Zamanian A
    Biotechnol Appl Biochem; 2013; 60(6):573-9. PubMed ID: 23614452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds.
    Farhangdoust S; Zamanian A; Yasaei M; Khorami M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):453-60. PubMed ID: 25428095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method.
    Alizadeh M; Abbasi F; Khoshfetrat AB; Ghaleh H
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3958-67. PubMed ID: 23910302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.
    Chen S; Zhang Q; Nakamoto T; Kawazoe N; Chen G
    Tissue Eng Part C Methods; 2016 Mar; 22(3):189-98. PubMed ID: 26650856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between cryogenic parameters and physico-chemical properties of porous gelatin cryogels.
    Van Vlierberghe S; Dubruel P; Lippens E; Cornelissen M; Schacht E
    J Biomater Sci Polym Ed; 2009; 20(10):1417-38. PubMed ID: 19622280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration.
    Mahnama H; Dadbin S; Frounchi M; Rajabi S
    Artif Cells Nanomed Biotechnol; 2017 Aug; 45(5):928-935. PubMed ID: 27263327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method.
    Wu X; Liu Y; Li X; Wen P; Zhang Y; Long Y; Wang X; Guo Y; Xing F; Gao J
    Acta Biomater; 2010 Mar; 6(3):1167-77. PubMed ID: 19733699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering.
    Grover CN; Cameron RE; Best SM
    J Mech Behav Biomed Mater; 2012 Jun; 10():62-74. PubMed ID: 22520419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monetite addition into gelatin based freeze-dried scaffolds for improved mechanical and osteogenic properties.
    Singh YP; Dasgupta S; Bhaskar R; Agrawal AK
    Biomed Mater; 2021 Nov; 16(6):. PubMed ID: 34624878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment.
    Poursamar SA; Hatami J; Lehner AN; da Silva CL; Ferreira FC; Antunes AP
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():63-70. PubMed ID: 25579897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of chitosan-gelatin scaffolds for dermal tissue engineering.
    Tseng HJ; Tsou TL; Wang HJ; Hsu SH
    J Tissue Eng Regen Med; 2013 Jan; 7(1):20-31. PubMed ID: 22034441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.
    Sánchez P; Pedraz JL; Orive G
    Int J Biol Macromol; 2017 May; 98():486-494. PubMed ID: 28185928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Chitosan Scaffolds with Tunable Porous Orientation Structure for Tissue Engineering.
    Wen P; Gao J; Zhang Y; Li X; Long Y; Wu X; Zhang Y; Guo Y; Xing F; Wang X; Qiu H; Liu Y
    J Biomater Sci Polym Ed; 2011; 22(1-3):19-40. PubMed ID: 20557692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emulsion Template Method for the Fabrication of Gelatin-Based Scaffold with a Controllable Pore Structure.
    Yuan L; Li X; Ge L; Jia X; Lei J; Mu C; Li D
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):269-277. PubMed ID: 30525427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.
    Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K
    J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen.
    Tang G; Zhang H; Zhao Y; Zhang Y; Li X; Yuan X
    J Biomater Sci Polym Ed; 2012; 23(17):2241-57. PubMed ID: 22137329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications.
    Kang HG; Kim SY; Lee YM
    J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):388-97. PubMed ID: 16767729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic freeze-cast collagen scaffolds for tissue regeneration: How processing conditions affect structure and properties in the dry and fully hydrated states.
    Divakar P; Yin K; Wegst UGK
    J Mech Behav Biomed Mater; 2019 Feb; 90():350-364. PubMed ID: 30399564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.