BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 23614692)

  • 1. Exploiting core-shell synergy for nanosynthesis and mechanistic investigation.
    Wang H; Chen L; Feng Y; Chen H
    Acc Chem Res; 2013 Jul; 46(7):1636-46. PubMed ID: 23614692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homo- and co-polymerization of polysytrene-block-poly(acrylic acid)-coated metal nanoparticles.
    Wang H; Song X; Liu C; He J; Chong WH; Chen H
    ACS Nano; 2014 Aug; 8(8):8063-73. PubMed ID: 25000121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating Polymer Transformation during the Encapsulation of Metal Nanoparticles by Polystyrene-
    Song X; Liu C; Liu X; Liu S
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3969-3975. PubMed ID: 31867959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Polystyrene-block-poly(acrylic acid)-coated Metal Nanoparticles as Monomers for Their Homo- and Co-polymerization.
    Wang Y; Song X; Wang H; Chen H
    J Vis Exp; 2015 Jul; (101):e52954. PubMed ID: 26274566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au-Ag core-shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties.
    Cha SK; Mun JH; Chang T; Kim SY; Kim JY; Jin HM; Lee JY; Shin J; Kim KH; Kim SO
    ACS Nano; 2015 May; 9(5):5536-43. PubMed ID: 25893844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the self-assembly structure of magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles.
    Hickey RJ; Haynes AS; Kikkawa JM; Park SJ
    J Am Chem Soc; 2011 Feb; 133(5):1517-25. PubMed ID: 21208004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.
    Sasidharan M; Nakashima K
    Acc Chem Res; 2014 Jan; 47(1):157-67. PubMed ID: 23962222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroepitaxial growth of core-shell and core-multishell nanocrystals composed of palladium and gold.
    Wang F; Sun LD; Feng W; Chen H; Yeung MH; Wang J; Yan CH
    Small; 2010 Nov; 6(22):2566-75. PubMed ID: 20963792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications.
    Chen Y; Chen HR; Shi JL
    Acc Chem Res; 2014 Jan; 47(1):125-37. PubMed ID: 23944328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell-corona au-micelle composites with a tunable smart hybrid shell.
    Chen X; An Y; Zhao D; He Z; Zhang Y; Cheng J; Shi L
    Langmuir; 2008 Aug; 24(15):8198-204. PubMed ID: 18576675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent nanoparticles via self-assembly with cross-linked block copolymer surfactants.
    Kim BS; Taton TA
    Langmuir; 2007 Feb; 23(4):2198-202. PubMed ID: 17279714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.
    Balmer JA; Mykhaylyk OO; Schmid A; Armes SP; Fairclough JP; Ryan AJ
    Langmuir; 2011 Jul; 27(13):8075-89. PubMed ID: 21661736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes.
    Shin HS; Huh S
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6324-31. PubMed ID: 23106495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold and magnetic oxide/gold core/shell nanoparticles as bio-functional nanoprobes.
    Lim II; Njoki PN; Park HY; Wang X; Wang L; Mott D; Zhong CJ
    Nanotechnology; 2008 Jul; 19(30):305102. PubMed ID: 21828754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hairy Core-Shell Polymer Nano-objects from Self-Assembled Block Copolymer Structures.
    Nandan B; Horechyy A
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12539-58. PubMed ID: 25603397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Au nanocrystal-directed growth of Au-Cu(2)O core-shell heterostructures with precise morphological control.
    Kuo CH; Hua TE; Huang MH
    J Am Chem Soc; 2009 Dec; 131(49):17871-8. PubMed ID: 19919066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.