BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23614704)

  • 1. Synthesis and characterization of antibacterial silver nanoparticle-impregnated rice husks and rice husk ash.
    He D; Ikeda-Ohno A; Boland DD; Waite TD
    Environ Sci Technol; 2013 May; 47(10):5276-84. PubMed ID: 23614704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the design and synthesis of supported silver nanoparticles for low cost water disinfection.
    He D; Kacopieros M; Ikeda-Ohno A; Waite TD
    Environ Sci Technol; 2014 Oct; 48(20):12320-6. PubMed ID: 25272282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS; Zhang Q; Colvin VL
    Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection.
    Nangmenyi G; Yue Z; Mehrabi S; Mintz E; Economy J
    Nanotechnology; 2009 Dec; 20(49):495705. PubMed ID: 19904023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes.
    Ahlberg S; Meinke MC; Werner L; Epple M; Diendorf J; Blume-Peytavi U; Lademann J; Vogt A; Rancan F
    Eur J Pharm Biopharm; 2014 Nov; 88(3):651-7. PubMed ID: 25108059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.
    Kent RD; Vikesland PJ
    Environ Sci Technol; 2012 Jul; 46(13):6977-84. PubMed ID: 22191460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver.
    Agnihotri S; Mukherji S; Mukherji S
    Nanoscale; 2013 Aug; 5(16):7328-40. PubMed ID: 23821237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages.
    Veronesi G; Aude-Garcia C; Kieffer I; Gallon T; Delangle P; Herlin-Boime N; Rabilloud T; Carrière M
    Nanoscale; 2015 Apr; 7(16):7323-30. PubMed ID: 25824974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions.
    Li Y; Zhang W; Niu J; Chen Y
    Environ Sci Technol; 2013 Sep; 47(18):10293-301. PubMed ID: 23952964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disinfection action of electrostatic versus steric-stabilized silver nanoparticles on E. coli under different water chemistries.
    Fauss EK; MacCuspie RI; Oyanedel-Craver V; Smith JA; Swami NS
    Colloids Surf B Biointerfaces; 2014 Jan; 113():77-84. PubMed ID: 24060931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants.
    Liu YS; Chang YC; Chen HH
    J Food Drug Anal; 2018 Apr; 26(2):649-656. PubMed ID: 29567234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea.
    Kostigen Mumper C; Ostermeyer AK; Semprini L; Radniecki TS
    Chemosphere; 2013 Nov; 93(10):2493-8. PubMed ID: 24120011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation.
    Chao JB; Liu JF; Yu SJ; Feng YD; Tan ZQ; Liu R; Yin YG
    Anal Chem; 2011 Sep; 83(17):6875-82. PubMed ID: 21797201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions.
    Xiu ZM; Ma J; Alvarez PJ
    Environ Sci Technol; 2011 Oct; 45(20):9003-8. PubMed ID: 21950450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA.
    Srivastava VC; Mall ID; Mishra IM
    J Hazard Mater; 2006 Jun; 134(1-3):257-67. PubMed ID: 16386363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rice husk based porous carbon loaded with silver nanoparticles by a simple and cost-effective approach and their antibacterial activity.
    Cui J; Yang Y; Hu Y; Li F
    J Colloid Interface Sci; 2015 Oct; 455():117-24. PubMed ID: 26057944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna.
    Zhao CM; Wang WX
    Nanotoxicology; 2012 Jun; 6(4):361-70. PubMed ID: 21591875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study.
    Ho CM; Yau SK; Lok CN; So MH; Che CM
    Chem Asian J; 2010 Feb; 5(2):285-93. PubMed ID: 20063340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.