These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
586 related articles for article (PubMed ID: 23614718)
1. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. Kar P; Lipowsky R; Knecht V J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718 [TBL] [Abstract][Full Text] [Related]
2. Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease. Kar P; Knecht V J Phys Chem B; 2012 Mar; 116(8):2605-14. PubMed ID: 22280246 [TBL] [Abstract][Full Text] [Related]
3. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease. Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623 [TBL] [Abstract][Full Text] [Related]
4. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G; Steinbrecher T; Papadopoulos MG J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142 [TBL] [Abstract][Full Text] [Related]
5. The binding energetics of first- and second-generation HIV-1 protease inhibitors: implications for drug design. Velazquez-Campoy A; Kiso Y; Freire E Arch Biochem Biophys; 2001 Jun; 390(2):169-75. PubMed ID: 11396919 [TBL] [Abstract][Full Text] [Related]
6. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations. Hu GD; Zhu T; Zhang SL; Wang D; Zhang QG Eur J Med Chem; 2010 Jan; 45(1):227-35. PubMed ID: 19910081 [TBL] [Abstract][Full Text] [Related]
7. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies. Meher BR; Wang Y J Phys Chem B; 2012 Feb; 116(6):1884-900. PubMed ID: 22239286 [TBL] [Abstract][Full Text] [Related]
8. Multiple Molecular Dynamics Simulations and Free-Energy Predictions Uncover the Susceptibility of Variants of HIV-1 Protease against Inhibitors Darunavir and KNI-1657. Wang R; Zheng Q Langmuir; 2021 Dec; 37(49):14407-14418. PubMed ID: 34851643 [TBL] [Abstract][Full Text] [Related]
9. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir. Kar P; Knecht V J Comput Aided Mol Des; 2012 Feb; 26(2):215-32. PubMed ID: 22350569 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. Hou T; Yu R J Med Chem; 2007 Mar; 50(6):1177-88. PubMed ID: 17300185 [TBL] [Abstract][Full Text] [Related]
11. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Lepsík M; Kríz Z; Havlas Z Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915 [TBL] [Abstract][Full Text] [Related]
12. Computational studies of darunavir into HIV-1 protease and DMPC bilayer: necessary conditions for effective binding and the role of the flaps. Leonis G; Czyżnikowska Ż; Megariotis G; Reis H; Papadopoulos MG J Chem Inf Model; 2012 Jun; 52(6):1542-58. PubMed ID: 22587384 [TBL] [Abstract][Full Text] [Related]
13. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease. Ohtaka H; Velázquez-Campoy A; Xie D; Freire E Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445 [TBL] [Abstract][Full Text] [Related]
14. Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor. Hu G; Ma A; Dou X; Zhao L; Wang J Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240358 [TBL] [Abstract][Full Text] [Related]
15. Dual inhibitors for aspartic proteases HIV-1 PR and renin: advancements in AIDS-hypertension-diabetes linkage via molecular dynamics, inhibition assays, and binding free energy calculations. Tzoupis H; Leonis G; Megariotis G; Supuran CT; Mavromoustakos T; Papadopoulos MG J Med Chem; 2012 Jun; 55(12):5784-96. PubMed ID: 22621689 [TBL] [Abstract][Full Text] [Related]
16. Systematic molecular dynamics, MM-PBSA, and ab initio approaches to the saquinavir resistance mechanism in HIV-1 PR due to 11 double and multiple mutations. Tzoupis H; Leonis G; Avramopoulos A; Mavromoustakos T; Papadopoulos MG J Phys Chem B; 2014 Aug; 118(32):9538-52. PubMed ID: 25036111 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the molecular dynamics and calculated binding free energies for nine FDA-approved HIV-1 PR drugs against subtype B and C-SA HIV PR. Ahmed SM; Kruger HG; Govender T; Maguire GE; Sayed Y; Ibrahim MA; Naicker P; Soliman ME Chem Biol Drug Des; 2013 Feb; 81(2):208-18. PubMed ID: 23017010 [TBL] [Abstract][Full Text] [Related]
18. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations. Wittayanarakul K; Aruksakunwong O; Sompornpisut P; Sanghiran-Lee V; Parasuk V; Pinitglang S; Hannongbua S J Chem Inf Model; 2005; 45(2):300-8. PubMed ID: 15807491 [TBL] [Abstract][Full Text] [Related]
19. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism. Meher BR; Wang Y J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662 [TBL] [Abstract][Full Text] [Related]
20. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors. Li D; Liu MS; Ji B; Hwang K; Huang Y J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]