BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23615525)

  • 21. Insights on JAK2 Modulation by Potent, Selective, and Cell-Permeable Pseudokinase-Domain Ligands.
    Liosi ME; Ippolito JA; Henry SP; Krimmer SG; Newton AS; Cutrona KJ; Olivarez RA; Mohanty J; Schlessinger J; Jorgensen WL
    J Med Chem; 2022 Jun; 65(12):8380-8400. PubMed ID: 35653642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of R683S (G) genetic mutations on the JAK2 activity, structure and stability.
    Li F; Guo HY; Wang M; Geng HL; Bian MR; Cao J; Chen C; Zeng LY; Wang XY; Wu QY
    Int J Biol Macromol; 2013 Sep; 60():186-95. PubMed ID: 23748007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disruption of R867 and Y613 interaction plays key roles in JAK2 R867Q mutation caused acute leukemia.
    Wu QY; Ma MM; Zhang S; Cao J; Yan ZL; Chen C; Li ZY; Zeng LY; Wang XY; Li F; Xu KL
    Int J Biol Macromol; 2019 Sep; 136():209-219. PubMed ID: 31199972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses.
    Varghese LN; Ungureanu D; Liau NP; Young SN; Laktyushin A; Hammaren H; Lucet IS; Nicola NA; Silvennoinen O; Babon JJ; Murphy JM
    Biochem J; 2014 Mar; 458(2):395-405. PubMed ID: 24354892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation.
    Lindauer K; Loerting T; Liedl KR; Kroemer RT
    Protein Eng; 2001 Jan; 14(1):27-37. PubMed ID: 11287676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An unusual insertion in Jak2 is crucial for kinase activity and differentially affects cytokine responses.
    Haan C; Kroy DC; Wüller S; Sommer U; Nöcker T; Rolvering C; Behrmann I; Heinrich PC; Haan S
    J Immunol; 2009 Mar; 182(5):2969-77. PubMed ID: 19234192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation.
    Ferrao RD; Wallweber HJ; Lupardus PJ
    Elife; 2018 Jul; 7():. PubMed ID: 30044226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of JAK2 V556F mutation on the JAK2's activity, structural stability and the transformation of Ba/F3 cells.
    Wu QY; Ma MM; Tong YX; Zhu YY; Liu Y; Cao J; Zhou P; Li ZY; Zeng LY; Wang XY; Li F; Xu KL
    Int J Biol Macromol; 2018 Oct; 117():271-279. PubMed ID: 29842959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of tubulin as a substrate of Jak2 tyrosine kinase and its role in Jak2-dependent signaling.
    Ma X; Sayeski PP
    Biochemistry; 2007 Jun; 46(24):7153-62. PubMed ID: 17530781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physician Education: The Erythropoietin Receptor and Signal Transduction.
    Yoshimura A; Arai K
    Oncologist; 1996; 1(5):337-339. PubMed ID: 10388012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absence of JH2 domain mutation of the tyrosine kinase JAK2 in renal cell carcinomas.
    Zhao J; Moch H
    Acta Oncol; 2008; 47(3):474-6. PubMed ID: 17851851
    [No Abstract]   [Full Text] [Related]  

  • 32. Regulation of JAK2 protein expression by chronic, pulsatile GH administration in vivo: a possible mechanism for ligand enhancement of signal transduction.
    Zhou Y; Wang X; Hadley J; Corey SJ; Vasilatos-Younken R
    Gen Comp Endocrinol; 2005 Nov; 144(2):128-39. PubMed ID: 15993410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations.
    Lee TS; Ma W; Zhang X; Kantarjian H; Albitar M
    BMC Struct Biol; 2009 Sep; 9():58. PubMed ID: 19744331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of Jak2 tyrosine phosphorylation in Bcr-Abl transformation.
    Xie S; Wang Y; Liu J; Sun T; Wilson MB; Smithgall TE; Arlinghaus RB
    Oncogene; 2001 Sep; 20(43):6188-95. PubMed ID: 11593427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Jak2 tyrosine kinase: a true jak of all trades?
    Sandberg EM; Wallace TA; Godeny MD; VonDerLinden D; Sayeski PP
    Cell Biochem Biophys; 2004; 41(2):207-32. PubMed ID: 15475610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. JAK/STAT signal transduction: regulators and implication in hematological malignancies.
    Valentino L; Pierre J
    Biochem Pharmacol; 2006 Mar; 71(6):713-21. PubMed ID: 16426581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phospholipase Cgamma1 negatively regulates growth hormone signalling by forming a ternary complex with Jak2 and protein tyrosine phosphatase-1B.
    Choi JH; Kim HS; Kim SH; Yang YR; Bae YS; Chang JS; Kwon HM; Ryu SH; Suh PG
    Nat Cell Biol; 2006 Dec; 8(12):1389-97. PubMed ID: 17128263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IFN-gamma-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes.
    Cho HJ; Kim SK; Jin SM; Hwang EM; Kim YS; Huh K; Mook-Jung I
    Glia; 2007 Feb; 55(3):253-62. PubMed ID: 17091494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disruption of E627 and R683 interaction is responsible for B-cell acute lymphoblastic leukemia caused by JAK2 R683G(S) mutations.
    Wu QY; Guo HY; Li F; Li ZY; Zeng LY; Xu KL
    Leuk Lymphoma; 2013 Dec; 54(12):2693-700. PubMed ID: 23452118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A structure-function perspective of Jak2 mutations and implications for alternate drug design strategies: the road not taken.
    Gnanasambandan K; Sayeski PP
    Curr Med Chem; 2011; 18(30):4659-73. PubMed ID: 21864276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.