These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23615542)

  • 1. Lesion in the lateral cerebellum specifically produces overshooting of the toe trajectory in leading forelimb during obstacle avoidance in the rat.
    Aoki S; Sato Y; Yanagihara D
    J Neurophysiol; 2013 Oct; 110(7):1511-24. PubMed ID: 23615542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of leading forelimb movements for obstacle avoidance during locomotion in rats.
    Aoki S; Sato Y; Yanagihara D
    Neurosci Res; 2012 Oct; 74(2):129-37. PubMed ID: 22902354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.
    Armstrong DM; Marple-Horvat DE
    Can J Physiol Pharmacol; 1996 Apr; 74(4):443-55. PubMed ID: 8828890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait modification during approach phase when stepping over an obstacle in rats.
    Sato Y; Aoki S; Yanagihara D
    Neurosci Res; 2012 Mar; 72(3):263-9. PubMed ID: 22178543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepping over an obstacle on a compliant travel surface reveals adaptive and maladaptive changes in locomotion patterns.
    MacLellan MJ; Patla AE
    Exp Brain Res; 2006 Aug; 173(3):531-8. PubMed ID: 16538376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study.
    Aoi S; Kondo T; Hayashi N; Yanagihara D; Aoki S; Yamaura H; Ogihara N; Funato T; Tomita N; Senda K; Tsuchiya K
    Biol Cybern; 2013 Apr; 107(2):201-16. PubMed ID: 23430278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of inactivation of the intermediate cerebellum on overground locomotion in the rat: a comparative study of the anterior and posterior lobes.
    Aoki S; Sato Y; Yanagihara D
    Neurosci Lett; 2014 Jul; 576():22-7. PubMed ID: 24887582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hind limb stepping over obstacles in the horse guided by place-object memory.
    Whishaw IQ; Sacrey LA; Gorny B
    Behav Brain Res; 2009 Mar; 198(2):372-9. PubMed ID: 19071161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance.
    Morton SM; Dordevic GS; Bastian AJ
    Exp Brain Res; 2004 May; 156(2):149-63. PubMed ID: 14758452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D analysis of fore- and hindlimb motion during overground and ladder walking: comparison of control and unloaded rats.
    Canu MH; Garnier C
    Exp Neurol; 2009 Jul; 218(1):98-108. PubMed ID: 19393236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions.
    Gonzalez CL; Gharbawie OA; Williams PT; Kleim JA; Kolb B; Whishaw IQ
    Eur J Neurosci; 2004 Dec; 20(12):3442-52. PubMed ID: 15610177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats.
    Garnier C; Falempin M; Canu MH
    Behav Brain Res; 2008 Jan; 186(1):57-65. PubMed ID: 17764759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Step-related discharges of Purkinje cells in the paravermal cortex of the cerebellar anterior lobe in the cat.
    Edgley SA; Lidierth M
    J Physiol; 1988 Jul; 401():399-415. PubMed ID: 3171993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
    Courtine G; Roy RR; Hodgson J; McKay H; Raven J; Zhong H; Yang H; Tuszynski MH; Edgerton VR
    J Neurophysiol; 2005 Jun; 93(6):3127-45. PubMed ID: 15647397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping.
    Beloozerova IN; Farrell BJ; Sirota MG; Prilutsky BI
    J Neurophysiol; 2010 Apr; 103(4):2285-300. PubMed ID: 20164404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory.
    Lajoie K; Andujar JE; Pearson K; Drew T
    J Neurophysiol; 2010 Apr; 103(4):2234-54. PubMed ID: 20386041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.
    Farrell BJ; Bulgakova MA; Sirota MG; Prilutsky BI; Beloozerova IN
    J Neurophysiol; 2015 Nov; 114(5):2682-702. PubMed ID: 26354314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta).
    Courtine G; Roy RR; Raven J; Hodgson J; McKay H; Yang H; Zhong H; Tuszynski MH; Edgerton VR
    Brain; 2005 Oct; 128(Pt 10):2338-58. PubMed ID: 16049043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.