BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23615744)

  • 1. Rapid construction of transgene-amplified CHO cell lines by cell cycle checkpoint engineering.
    Lee KH; Onitsuka M; Honda K; Ohtake H; Omasa T
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5731-41. PubMed ID: 23615744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer?
    Chusainow J; Yang YS; Yeo JH; Toh PC; Asvadi P; Wong NS; Yap MG
    Biotechnol Bioeng; 2009 Mar; 102(4):1182-96. PubMed ID: 18979540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lengthening of high-yield production levels of monoclonal antibody-producing Chinese hamster ovary cells by downregulation of breast cancer 1.
    Matsuyama R; Yamano N; Kawamura N; Omasa T
    J Biosci Bioeng; 2017 Mar; 123(3):382-389. PubMed ID: 27742176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of high-producing cell lines by overexpression of cell division cycle 25 homolog A in Chinese hamster ovary cells.
    Lee KH; Tsutsui T; Honda K; Asano R; Kumagai I; Ohtake H; Omasa T
    J Biosci Bioeng; 2013 Dec; 116(6):754-60. PubMed ID: 23810665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells.
    Vishwanathan N; Le H; Jacob NM; Tsao YS; Ng SW; Loo B; Liu Z; Kantardjieff A; Hu WS
    Biotechnol Bioeng; 2014 Mar; 111(3):518-28. PubMed ID: 24108600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium phosphate transfection generates mammalian recombinant cell lines with higher specific productivity than polyfection.
    Chenuet S; Martinet D; Besuchet-Schmutz N; Wicht M; Jaccard N; Bon AC; Derouazi M; Hacker DL; Beckmann JS; Wurm FM
    Biotechnol Bioeng; 2008 Dec; 101(5):937-45. PubMed ID: 18781700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability.
    Matasci M; Baldi L; Hacker DL; Wurm FM
    Biotechnol Bioeng; 2011 Sep; 108(9):2141-50. PubMed ID: 21495018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved gene amplification by cell-cycle engineering combined with the Cre-loxP system in Chinese hamster ovary cells.
    Matsuyama R; Tsutsui T; Lee KH; Onitsuka M; Omasa T
    J Biosci Bioeng; 2015 Dec; 120(6):701-8. PubMed ID: 26108159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The isolation of CHO cells with a site conferring a high and reproducible transgene amplification rate.
    Cacciatore JJ; Leonard EF; Chasin LA
    J Biotechnol; 2012 Dec; 164(2):346-53. PubMed ID: 23376841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system.
    Zhou H; Liu ZG; Sun ZW; Huang Y; Yu WY
    J Biotechnol; 2010 May; 147(2):122-9. PubMed ID: 20371256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ubiquitous Chromatin Opening Elements (UCOEs) effect on transgene position and expression stability in CHO cells following methotrexate (MTX) amplification.
    Betts Z; Dickson AJ
    Biotechnol J; 2016 Mar; 11(4):554-64. PubMed ID: 26632501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells.
    Hong WW; Wu SC
    Vaccine; 2007 May; 25(20):4103-11. PubMed ID: 17428585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.
    Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC
    Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells.
    Wulhfard S; Tissot S; Bouchet S; Cevey J; De Jesus M; Hacker DL; Wurm FM
    Biotechnol Prog; 2008; 24(2):458-65. PubMed ID: 18220408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of recombinant monoclonal antibody production in chinese hamster ovary cells: a comparative study of gene copy number, mRNA level, and protein expression.
    Jiang Z; Huang Y; Sharfstein ST
    Biotechnol Prog; 2006; 22(1):313-8. PubMed ID: 16454525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single-plasmid vector for transgene amplification using short hairpin RNA targeting the 3'-UTR of amplifiable dhfr.
    Kang SY; Kim YG; Lee HW; Lee EG
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10117-26. PubMed ID: 26245680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of Promoter Usage and Intragenic CpG Content: Impact on GFP Reporter Gene Expression.
    Krinner S; Heitzer A; Asbach B; Wagner R
    Hum Gene Ther; 2015 Dec; 26(12):826-40. PubMed ID: 26414116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of CHO cell lines producing high and low quantities of a recombinant antibody before and after selection with methotrexate.
    Hausmann R; Chudobová I; Spiegel H; Schillberg S
    J Biotechnol; 2018 Jan; 265():65-69. PubMed ID: 29137976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of engineered CHO strains for high-level production of recombinant proteins.
    Kito M; Itami S; Fukano Y; Yamana K; Shibui T
    Appl Microbiol Biotechnol; 2002 Dec; 60(4):442-8. PubMed ID: 12466885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using matrix attachment regions to improve recombinant protein production.
    Harraghy N; Buceta M; Regamey A; Girod PA; Mermod N
    Methods Mol Biol; 2012; 801():93-110. PubMed ID: 21987249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.