These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 23615914)
1. Overexpression of USP14 protease reduces I-κB protein levels and increases cytokine release in lung epithelial cells. Mialki RK; Zhao J; Wei J; Mallampalli DF; Zhao Y J Biol Chem; 2013 May; 288(22):15437-41. PubMed ID: 23615914 [TBL] [Abstract][Full Text] [Related]
2. Ubiquitin-specific protease 14 regulates LPS-induced inflammation by increasing ERK1/2 phosphorylation and NF-κB activation. Liu N; Kong T; Chen X; Hu H; Gu H; Liu S; Chen X; Yang Q; Li A; Xiong X; Zhang Z Mol Cell Biochem; 2017 Jul; 431(1-2):87-96. PubMed ID: 28364380 [TBL] [Abstract][Full Text] [Related]
3. Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction. Vaden JH; Bhattacharyya BJ; Chen PC; Watson JA; Marshall AG; Phillips SE; Wilson JA; King GD; Miller RJ; Wilson SM Mol Neurodegener; 2015 Jan; 10():3. PubMed ID: 25575639 [TBL] [Abstract][Full Text] [Related]
4. The deubiquitinating enzyme Usp14 allosterically inhibits multiple proteasomal activities and ubiquitin-independent proteolysis. Kim HT; Goldberg AL J Biol Chem; 2017 Jun; 292(23):9830-9839. PubMed ID: 28416611 [TBL] [Abstract][Full Text] [Related]
5. Ubiquitin-Specific Protease 14 (USP14) Aggravates Inflammatory Response and Apoptosis of Lung Epithelial Cells in Pneumonia by Modulating Poly (ADP-Ribose) Polymerase-1 (PARP-1). Huang C; Cao H; Qin J; Xu L; Hu F; Gu Y; Dou C; Zhang S Inflammation; 2021 Oct; 44(5):2054-2064. PubMed ID: 34085162 [TBL] [Abstract][Full Text] [Related]
6. In vitro analysis of proteasome-associated USP14 activity for substrate degradation and deubiquitylation. Muniyappan S; Lee BH Methods Enzymol; 2019; 619():249-268. PubMed ID: 30910023 [TBL] [Abstract][Full Text] [Related]
7. Extracellular signal-regulated kinase (ERK) regulates cortactin ubiquitination and degradation in lung epithelial cells. Zhao J; Wei J; Mialki R; Zou C; Mallampalli RK; Zhao Y J Biol Chem; 2012 Jun; 287(23):19105-14. PubMed ID: 22514278 [TBL] [Abstract][Full Text] [Related]
8. Compensatory increase in USP14 activity accompanies impaired proteasomal proteolysis during aging. Ponnappan S; Palmieri M; Sullivan DH; Ponnappan U Mech Ageing Dev; 2013; 134(1-2):53-9. PubMed ID: 23291607 [TBL] [Abstract][Full Text] [Related]
9. Nodakenin suppresses lipopolysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock. Rim HK; Cho W; Sung SH; Lee KT J Pharmacol Exp Ther; 2012 Sep; 342(3):654-64. PubMed ID: 22637723 [TBL] [Abstract][Full Text] [Related]
10. Post-endocytotic Deubiquitination and Degradation of the Metabotropic γ-Aminobutyric Acid Receptor by the Ubiquitin-specific Protease 14. Lahaie N; Kralikova M; Prézeau L; Blahos J; Bouvier M J Biol Chem; 2016 Mar; 291(13):7156-70. PubMed ID: 26817839 [TBL] [Abstract][Full Text] [Related]
11. USP9X promotes LPS-induced pulmonary epithelial barrier breakdown and hyperpermeability by activating an NF-κBp65 feedback loop. Xiang Y; Zhang S; Lu J; Zhang W; Cai M; Qiu D; Cai D Am J Physiol Cell Physiol; 2019 Sep; 317(3):C534-C543. PubMed ID: 31216195 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of p65 is required for zinc oxide nanoparticle-induced interleukin 8 expression in human bronchial epithelial cells. Wu W; Samet JM; Peden DB; Bromberg PA Environ Health Perspect; 2010 Jul; 118(7):982-7. PubMed ID: 20194077 [TBL] [Abstract][Full Text] [Related]
13. Chloroquine attenuates lipopolysaccharide-induced inflammatory responses through upregulation of USP25. Ding C; Li F; Long Y; Zheng J Can J Physiol Pharmacol; 2017 May; 95(5):481-491. PubMed ID: 28134560 [TBL] [Abstract][Full Text] [Related]
14. Short-term modulation of interleukin-1beta signaling by hyperoxia: uncoupling of IkappaB kinase activation and NF-kappaB-dependent gene expression. Odoms K; Shanley TP; Wong HR Am J Physiol Lung Cell Mol Physiol; 2004 Mar; 286(3):L554-62. PubMed ID: 14617515 [TBL] [Abstract][Full Text] [Related]
15. The USP14-NLRC5 pathway inhibits titanium particle-induced osteolysis in mice by suppressing NF-κB and PI3K/AKT activities. Fang G; Fu Y; Li S; Qiu J; Kuang M; Lin S; Li C; Ding Y J Biol Chem; 2020 May; 295(20):7018-7032. PubMed ID: 32273344 [TBL] [Abstract][Full Text] [Related]
17. Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65. Nihira K; Ando Y; Yamaguchi T; Kagami Y; Miki Y; Yoshida K Cell Death Differ; 2010 Apr; 17(4):689-98. PubMed ID: 19911008 [TBL] [Abstract][Full Text] [Related]
18. Nicotine reduces TNF-α expression through a α7 nAChR/MyD88/NF-ĸB pathway in HBE16 airway epithelial cells. Li Q; Zhou XD; Kolosov VP; Perelman JM Cell Physiol Biochem; 2011; 27(5):605-12. PubMed ID: 21691078 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory effect of chroman carboxamide on interleukin-6 expression in response to lipopolysaccharide by preventing nuclear factor-kappaB activation in macrophages. Kim BH; Lee KH; Chung EY; Chang YS; Lee H; Lee CK; Min KR; Kim Y Eur J Pharmacol; 2006 Aug; 543(1-3):158-65. PubMed ID: 16797005 [TBL] [Abstract][Full Text] [Related]
20. The ORF2 glycoprotein of hepatitis E virus inhibits cellular NF-κB activity by blocking ubiquitination mediated proteasomal degradation of IκBα in human hepatoma cells. Surjit M; Varshney B; Lal SK BMC Biochem; 2012 May; 13():7. PubMed ID: 22590978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]