BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 23616255)

  • 1. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses.
    Loessner D; Holzapfel BM; Clements JA
    Adv Drug Deliv Rev; 2014 Dec; 79-80():193-213. PubMed ID: 24969478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform.
    Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J
    Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.
    Andersson H; van den Berg A
    Lab Chip; 2004 Apr; 4(2):98-103. PubMed ID: 15052347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic hydrogels for tissue engineering.
    Huang GY; Zhou LH; Zhang QC; Chen YM; Sun W; Xu F; Lu TJ
    Biofabrication; 2011 Mar; 3(1):012001. PubMed ID: 21372342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery.
    Prestwich GD
    Acc Chem Res; 2008 Jan; 41(1):139-48. PubMed ID: 17655274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterning of cell-instructive hydrogels by hydrodynamic flow focusing.
    Cosson S; Allazetta S; Lutolf MP
    Lab Chip; 2013 Jun; 13(11):2099-105. PubMed ID: 23598796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered 3D tumor angiogenesis models: potential technologies for anti-cancer drug discovery.
    Chwalek K; Bray LJ; Werner C
    Adv Drug Deliv Rev; 2014 Dec; 79-80():30-9. PubMed ID: 24819220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic cell culture models for tissue engineering.
    Inamdar NK; Borenstein JT
    Curr Opin Biotechnol; 2011 Oct; 22(5):681-9. PubMed ID: 21723720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic 3D models of cancer.
    Sung KE; Beebe DJ
    Adv Drug Deliv Rev; 2014 Dec; 79-80():68-78. PubMed ID: 25017040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
    Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A
    Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering tumors with 3D scaffolds.
    Fischbach C; Chen R; Matsumoto T; Schmelzle T; Brugge JS; Polverini PJ; Mooney DJ
    Nat Methods; 2007 Oct; 4(10):855-60. PubMed ID: 17767164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-engineered three-dimensional tumor models to study tumor angiogenesis.
    Verbridge SS; Chandler EM; Fischbach C
    Tissue Eng Part A; 2010 Jul; 16(7):2147-52. PubMed ID: 20214471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems.
    Kuzmic N; Moore T; Devadas D; Young EWK
    Biomech Model Mechanobiol; 2019 Jun; 18(3):717-731. PubMed ID: 30604299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in microfluidics-based chemotaxis studies.
    Wu J; Wu X; Lin F
    Lab Chip; 2013 Jul; 13(13):2484-99. PubMed ID: 23712326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.