These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23616351)

  • 1. Mapping alternating current electroosmotic flow at the dielectrophoresis crossover frequency of a colloidal probe.
    Wang J; Wei MT; Cohen JA; Ou-Yang HD
    Electrophoresis; 2013 Jul; 34(13):1915-21. PubMed ID: 23616351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoresis force spectroscopy for colloidal clusters.
    Park H; Wei MT; Ou-Yang HD
    Electrophoresis; 2012 Aug; 33(16):2491-7. PubMed ID: 22899256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced penetration of fluoride particles into bovine enamel by combining dielectrophoresis with AC electroosmosis.
    Ivanoff CS; Swami NS; Hottel TL; Garcia-Godoy F
    Electrophoresis; 2013 Nov; 34(20-21):2945-55. PubMed ID: 23897721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
    Islam N; Reyna J
    Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking the fluoride diffusion barrier with combined dielectrophoresis and AC electroosmosis.
    Ivanoff CS; Hottel TL; Garcia-Godoy F; Shah P
    Am J Dent; 2013 Aug; 26(4):228-36. PubMed ID: 24693634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of multiple electrohydrodynamic forces acting on a colloidal particle near an electrode due to an alternating current electric field.
    Fagan JA; Sides PJ; Prieve DC
    Langmuir; 2005 Mar; 21(5):1784-94. PubMed ID: 15723473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and selective concentration of bacteria, viruses, and proteins using alternating current signal superimposition on two coplanar electrodes.
    Han CH; Woo SY; Bhardwaj J; Sharma A; Jang J
    Sci Rep; 2018 Oct; 8(1):14942. PubMed ID: 30297764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format.
    Cheng P; Barrett MJ; Oliver PM; Cetin D; Vezenov D
    Lab Chip; 2011 Dec; 11(24):4248-59. PubMed ID: 22051576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of induced-charge electrokinetic phenomena on the dielectrophoretic assembly of gold nanoparticles in a conductive-island-based microelectrode system.
    Ding H; Liu W; Shao J; Ding Y; Zhang L; Niu J
    Langmuir; 2013 Oct; 29(39):12093-103. PubMed ID: 23998619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.
    Hoettges KF; McDonnell MB; Hughes MP
    Electrophoresis; 2014 Feb; 35(4):467-73. PubMed ID: 24166772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
    Ng WY; Goh S; Lam YC; Yang C; Rodríguez I
    Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.
    Lewpiriyawong N; Xu G; Yang C
    Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics.
    Huang CC; Bazant MZ; Thorsen T
    Lab Chip; 2010 Jan; 10(1):80-5. PubMed ID: 20024054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-, two-, and three-dimensional organization of colloidal particles using nonuniform alternating current electric fields.
    Docoslis A; Alexandridis P
    Electrophoresis; 2002 Jul; 23(14):2174-83. PubMed ID: 12210221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoresis and AC-induced assembly in binary colloidal suspensions.
    Hoffman PD; Sarangapani PS; Zhu Y
    Langmuir; 2008 Nov; 24(21):12164-71. PubMed ID: 18842062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.