These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 23616358)
1. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Shi L; Jing C; Ma W; Li DW; Halls JE; Marken F; Long YT Angew Chem Int Ed Engl; 2013 Jun; 52(23):6011-4. PubMed ID: 23616358 [TBL] [Abstract][Full Text] [Related]
2. Dark-field microscopy in imaging of plasmon resonant nanoparticles. Liu M; Chao J; Deng S; Wang K; Li K; Fan C Colloids Surf B Biointerfaces; 2014 Dec; 124():111-7. PubMed ID: 25009105 [TBL] [Abstract][Full Text] [Related]
4. Real-time monitoring of the aging of single plasmonic copper nanoparticles. Qin LX; Jing C; Li Y; Li DW; Long YT Chem Commun (Camb); 2012 Feb; 48(10):1511-3. PubMed ID: 21975600 [TBL] [Abstract][Full Text] [Related]
5. New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Jing C; Rawson FJ; Zhou H; Shi X; Li WH; Li DW; Long YT Anal Chem; 2014 Jun; 86(11):5513-8. PubMed ID: 24766541 [TBL] [Abstract][Full Text] [Related]
6. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Lee KS; El-Sayed MA J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772 [TBL] [Abstract][Full Text] [Related]
7. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Liu GL; Long YT; Choi Y; Kang T; Lee LP Nat Methods; 2007 Dec; 4(12):1015-7. PubMed ID: 18026109 [TBL] [Abstract][Full Text] [Related]
8. Chrominance to dimension: a real-time method for measuring the size of single gold nanoparticles. Jing C; Gu Z; Ying YL; Li DW; Zhang L; Long YT Anal Chem; 2012 May; 84(10):4284-91. PubMed ID: 22500563 [TBL] [Abstract][Full Text] [Related]
9. Sensitive and Simple Detection of Glucose Based on Single Plasmonic Nanorod. Xu G; Zhu Y; Pang J Anal Sci; 2017; 33(2):223-227. PubMed ID: 28190844 [TBL] [Abstract][Full Text] [Related]
10. Correct spectral conversion between surface-enhanced raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection. Lee K; Irudayaraj J Small; 2013 Apr; 9(7):1106-15. PubMed ID: 23281179 [TBL] [Abstract][Full Text] [Related]
11. Localized surface plasmon resonance spectroscopy and sensing. Willets KA; Van Duyne RP Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281 [TBL] [Abstract][Full Text] [Related]
12. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Lin HY; Huang CH; Chang CH; Lan YC; Chui HC Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835 [TBL] [Abstract][Full Text] [Related]
13. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles. Niu J; Shin YJ; Son J; Lee Y; Ahn JH; Yang H Opt Express; 2012 Aug; 20(18):19690-6. PubMed ID: 23037021 [TBL] [Abstract][Full Text] [Related]
14. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. He YQ; Liu SP; Kong L; Liu ZF Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2861-6. PubMed ID: 16165025 [TBL] [Abstract][Full Text] [Related]
15. Determination of 6-thioguanine based on localized surface plasmon resonance of gold nanoparticle. Bi N; Hu M; Zhu H; Qi H; Tian Y; Zhang H Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():24-30. PubMed ID: 23416905 [TBL] [Abstract][Full Text] [Related]
16. The sensitive, anion-selective detection of arsenate with poly(allylamine hydrochloride) by single particle plasmon-based spectroscopy. Hong S; Park S; Lee S; Yang YI; Song HD; Yi J Anal Chim Acta; 2011 May; 694(1-2):136-41. PubMed ID: 21565314 [TBL] [Abstract][Full Text] [Related]
17. Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition. Hwang WS; Truong PL; Sim SJ Anal Biochem; 2012 Feb; 421(1):213-8. PubMed ID: 22146558 [TBL] [Abstract][Full Text] [Related]
18. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. Willingham B; Link S Opt Express; 2011 Mar; 19(7):6450-61. PubMed ID: 21451673 [TBL] [Abstract][Full Text] [Related]
19. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Nath N; Chilkoti A Anal Chem; 2004 Sep; 76(18):5370-8. PubMed ID: 15362894 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects. Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]