These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 23616489)
1. Glucose dehydration to 5-hydroxymethylfurfural in a biphasic system over solid acid foams. Ordomsky VV; van der Schaaf J; Schouten JC; Nijhuis TA ChemSusChem; 2013 Sep; 6(9):1697-707. PubMed ID: 23616489 [TBL] [Abstract][Full Text] [Related]
2. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system. Ordomsky VV; van der Schaaf J; Schouten JC; Nijhuis TA ChemSusChem; 2012 Sep; 5(9):1812-9. PubMed ID: 22777706 [TBL] [Abstract][Full Text] [Related]
3. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. Choudhary V; Mushrif SH; Ho C; Anderko A; Nikolakis V; Marinkovic NS; Frenkel AI; Sandler SI; Vlachos DG J Am Chem Soc; 2013 Mar; 135(10):3997-4006. PubMed ID: 23432136 [TBL] [Abstract][Full Text] [Related]
4. Dehydration of fructose to 5-hydroxymethylfurfural in sub-critical water over heterogeneous zirconium phosphate catalysts. Asghari FS; Yoshida H Carbohydr Res; 2006 Oct; 341(14):2379-87. PubMed ID: 16870164 [TBL] [Abstract][Full Text] [Related]
5. Organic Carbonates: Efficient Extraction Solvents for the Synthesis of HMF in Aqueous Media with Cerium Phosphates as Catalysts. Dibenedetto A; Aresta M; di Bitonto L; Pastore C ChemSusChem; 2016 Jan; 9(1):118-25. PubMed ID: 26676974 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions. Weingarten R; Cho J; Xing R; Conner WC; Huber GW ChemSusChem; 2012 Jul; 5(7):1280-90. PubMed ID: 22696262 [TBL] [Abstract][Full Text] [Related]
7. Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system. Yan L; Ma R; Wei H; Li L; Zou B; Xu Y Bioresour Technol; 2019 May; 279():84-91. PubMed ID: 30711756 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of hydrophobic polymer foams with double acid sites on surface of macropore for conversion of carbohydrate. Pan J; Mao Y; Gao H; Xiong Q; Qiu F; Zhang T; Niu X Carbohydr Polym; 2016 Jun; 143():212-22. PubMed ID: 27083362 [TBL] [Abstract][Full Text] [Related]
9. Selective catalytic production of 5-hydroxymethylfurfural from glucose by adjusting catalyst wettability. Wang L; Wang H; Liu F; Zheng A; Zhang J; Sun Q; Lewis JP; Zhu L; Meng X; Xiao FS ChemSusChem; 2014 Feb; 7(2):402-6. PubMed ID: 24399510 [TBL] [Abstract][Full Text] [Related]
10. Chromium Oxide-modified Mesoporous Zirconium Dioxide: Efficient Heterogeneous Catalyst for the Synthesis of 5-Hydroxymethylfurfural. Wang X; Lu N; Fu Y; Lu C; Guan M; Wang K; Yu H Chem Asian J; 2022 Oct; 17(19):e202200653. PubMed ID: 35925020 [TBL] [Abstract][Full Text] [Related]
11. Nafion-resin-modified mesocellular silica foam catalyst for 5-hydroxymethylfurfural production from D-fructose. Huang Z; Pan W; Zhou H; Qin F; Xu H; Shen W ChemSusChem; 2013 Jun; 6(6):1063-9. PubMed ID: 23670918 [TBL] [Abstract][Full Text] [Related]
12. Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water. Daorattanachai P; Khemthong P; Viriya-Empikul N; Laosiripojana N; Faungnawakij K Carbohydr Res; 2012 Dec; 363():58-61. PubMed ID: 23123573 [TBL] [Abstract][Full Text] [Related]
13. Aluminum alkoxy-catalyzed biomass conversion of glucose to 5-hydroxymethylfurfural: Mechanistic study of the cooperative bifunctional catalysis. Wang Q; Fu M; Li X; Huang R; Glaser RE; Zhao L J Comput Chem; 2019 Jun; 40(16):1599-1608. PubMed ID: 30847957 [TBL] [Abstract][Full Text] [Related]
14. Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural. Yang F; Liu Q; Yue M; Bai X; Du Y Chem Commun (Camb); 2011 Apr; 47(15):4469-71. PubMed ID: 21369620 [TBL] [Abstract][Full Text] [Related]
15. One-pot synthesis of 5-hydroxymethylfurfural directly from starch over SO(4)(2-)/ZrO2-Al2O3 solid catalyst. Yang Y; Xiang X; Tong D; Hu C; Abu-Omar MM Bioresour Technol; 2012 Jul; 116():302-6. PubMed ID: 22534374 [TBL] [Abstract][Full Text] [Related]
17. Catalytic conversion of xylose to furfural over the solid acid SO₄ ²⁻-/ZrO₂-Al₂O₃/SBA-15 catalysts. Shi X; Wu Y; Li P; Yi H; Yang M; Wang G Carbohydr Res; 2011 Mar; 346(4):480-7. PubMed ID: 21276967 [TBL] [Abstract][Full Text] [Related]
18. Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Watanabe M; Aizawa Y; Iida T; Aida TM; Levy C; Sue K; Inomata H Carbohydr Res; 2005 Sep; 340(12):1925-30. PubMed ID: 16023627 [TBL] [Abstract][Full Text] [Related]
19. Three-phase catalytic system of H2O, ionic liquid, and VOPO4-SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural. Tian C; Zhu X; Chai SH; Wu Z; Binder A; Brown S; Li L; Luo H; Guo Y; Dai S ChemSusChem; 2014 Jun; 7(6):1703-9. PubMed ID: 24729382 [TBL] [Abstract][Full Text] [Related]
20. Direct conversion of cellulose to 5-hydroxymethylfurfural (HMF) using an efficient and inexpensive boehmite catalyst. Tang Z; Su J Carbohydr Res; 2019 Jul; 481():52-59. PubMed ID: 31247450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]