BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 23616524)

  • 1. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.
    Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM
    J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability.
    Wegner S; Belle MDC; Hughes ATL; Diekman CO; Piggins HD
    J Neurosci; 2017 Aug; 37(33):7824-7836. PubMed ID: 28698388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling.
    Edwards MD; Brancaccio M; Chesham JE; Maywood ES; Hastings MH
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2732-7. PubMed ID: 26903624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice.
    Maywood ES; Elliott TS; Patton AP; Krogager TP; Chesham JE; Ernst RJ; Beránek V; Brancaccio M; Chin JW; Hastings MH
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12388-E12397. PubMed ID: 30487216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus.
    Ono D; Honma S; Honma K
    Nat Commun; 2013; 4():1666. PubMed ID: 23575670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cry1-/- circadian rhythmicity depends on SCN intercellular coupling.
    Evans JA; Pan H; Liu AC; Welsh DK
    J Biol Rhythms; 2012 Dec; 27(6):443-52. PubMed ID: 23223370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators.
    Ruan GX; Gamble KL; Risner ML; Young LA; McMahon DG
    PLoS One; 2012; 7(6):e38985. PubMed ID: 22701739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice.
    Noguchi T; Lo K; Diemer T; Welsh DK
    Neurosci Lett; 2016 Apr; 619():49-53. PubMed ID: 26930624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits.
    Maywood ES; Chesham JE; Winsky-Sommerer R; Hastings MH
    J Neurosci; 2021 Oct; 41(41):8562-8576. PubMed ID: 34446572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock.
    Hirano A; Nakagawa T; Yoshitane H; Oyama M; Kozuka-Hata H; Lanjakornsiripan D; Fukada Y
    PLoS One; 2016; 11(4):e0154263. PubMed ID: 27123980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN.
    Ono D; Honma KI; Schmal C; Takumi T; Kawamoto T; Fujimoto K; Kato Y; Honma S
    Sci Rep; 2021 Sep; 11(1):19240. PubMed ID: 34584158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the period of the mammalian circadian clock: additive and independent effects of CK1εTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking.
    Maywood ES; Chesham JE; Meng QJ; Nolan PM; Loudon AS; Hastings MH
    J Neurosci; 2011 Jan; 31(4):1539-44. PubMed ID: 21273438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential contributions of intra-cellular and inter-cellular mechanisms to the spatial and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, cryptochrome-null and vasoactive intestinal peptide receptor 2-null mutant mice.
    Pauls S; Foley NC; Foley DK; LeSauter J; Hastings MH; Maywood ES; Silver R
    Eur J Neurosci; 2014 Aug; 40(3):2528-40. PubMed ID: 24891292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus.
    Patton AP; Chesham JE; Hastings MH
    J Neurosci; 2016 Sep; 36(36):9326-41. PubMed ID: 27605609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics and neurobiology of circadian clocks in mammals.
    Siepka SM; Yoo SH; Park J; Lee C; Takahashi JS
    Cold Spring Harb Symp Quant Biol; 2007; 72():251-259. PubMed ID: 18419282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons.
    Smyllie NJ; Bagnall J; Koch AA; Niranjan D; Polidarova L; Chesham JE; Chin JW; Partch CL; Loudon ASI; Hastings MH
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of heterozygous and homozygous alleles in cryptochrome-deficient mice.
    Oda Y; Takasu NN; Ohno SN; Shirakawa Y; Sugimura M; Nakamura TJ; Nakamura W
    Neurosci Lett; 2022 Feb; 772():136415. PubMed ID: 34954114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2.
    Vitaterna MH; Selby CP; Todo T; Niwa H; Thompson C; Fruechte EM; Hitomi K; Thresher RJ; Ishikawa T; Miyazaki J; Takahashi JS; Sancar A
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12114-9. PubMed ID: 10518585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes.
    Hirano A; Yumimoto K; Tsunematsu R; Matsumoto M; Oyama M; Kozuka-Hata H; Nakagawa T; Lanjakornsiripan D; Nakayama KI; Fukada Y
    Cell; 2013 Feb; 152(5):1106-18. PubMed ID: 23452856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse.
    Maywood ES; Drynan L; Chesham JE; Edwards MD; Dardente H; Fustin JM; Hazlerigg DG; O'Neill JS; Codner GF; Smyllie NJ; Brancaccio M; Hastings MH
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9547-52. PubMed ID: 23690615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.