BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 23616524)

  • 21. Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark.
    Ono D; Honma S; Honma K
    PLoS One; 2013; 8(11):e80615. PubMed ID: 24278295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period.
    Godinho SI; Maywood ES; Shaw L; Tucci V; Barnard AR; Busino L; Pagano M; Kendall R; Quwailid MM; Romero MR; O'neill J; Chesham JE; Brooker D; Lalanne Z; Hastings MH; Nolan PM
    Science; 2007 May; 316(5826):897-900. PubMed ID: 17463252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN.
    Ono D; Honma S; Honma K
    Sci Adv; 2016 Sep; 2(9):e1600960. PubMed ID: 27626074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The circadian E3 ligase complex SCF
    Correia SP; Chan AB; Vaughan M; Zolboot N; Perea V; Huber AL; Kriebs A; Moresco JJ; Yates JR; Lamia KA
    Sci Rep; 2019 Jan; 9(1):198. PubMed ID: 30655559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical cholangiocarcinogenesis control by cryptochrome clock genes.
    Mteyrek A; Filipski E; Guettier C; Oklejewicz M; van der Horst GT; Okyar A; Lévi F
    Int J Cancer; 2017 Jun; 140(11):2473-2483. PubMed ID: 28224616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual origins of the intracellular circadian calcium rhythm in the suprachiasmatic nucleus.
    Enoki R; Ono D; Kuroda S; Honma S; Honma KI
    Sci Rep; 2017 Feb; 7():41733. PubMed ID: 28155916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization.
    Papp SJ; Huber AL; Jordan SD; Kriebs A; Nguyen M; Moresco JJ; Yates JR; Lamia KA
    Elife; 2015 Mar; 4():. PubMed ID: 25756610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryptochrome-dependent circadian periods in the arcuate nucleus.
    Uchida H; Nakamura TJ; Takasu NN; Todo T; Sakai T; Nakamura W
    Neurosci Lett; 2016 Jan; 610():123-8. PubMed ID: 26542738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered phase-relationship between peripheral oscillators and environmental time in Cry1 or Cry2 deficient mouse models for early and late chronotypes.
    Destici E; Jacobs EH; Tamanini F; Loos M; van der Horst GT; Oklejewicz M
    PLoS One; 2013; 8(12):e83602. PubMed ID: 24386234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced light response of neuronal firing activity in the suprachiasmatic nucleus and optic nerve of cryptochrome-deficient mice.
    Nakamura TJ; Ebihara S; Shinohara K
    PLoS One; 2011; 6(12):e28726. PubMed ID: 22216107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian regulation of food-anticipatory activity in molecular clock-deficient mice.
    Takasu NN; Kurosawa G; Tokuda IT; Mochizuki A; Todo T; Nakamura W
    PLoS One; 2012; 7(11):e48892. PubMed ID: 23145013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice.
    Yamanaka Y; Suzuki Y; Todo T; Honma K; Honma S
    Genes Cells; 2010 Oct; 15(10):1063-71. PubMed ID: 20825493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals.
    Dardente H; Mendoza J; Fustin JM; Challet E; Hazlerigg DG
    PLoS One; 2008; 3(10):e3530. PubMed ID: 18953409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term in vivo recording of circadian rhythms in brains of freely moving mice.
    Mei L; Fan Y; Lv X; Welsh DK; Zhan C; Zhang EE
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4276-4281. PubMed ID: 29610316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRY2 and FBXL3 Cooperatively Degrade c-MYC.
    Huber AL; Papp SJ; Chan AB; Henriksson E; Jordan SD; Kriebs A; Nguyen M; Wallace M; Li Z; Metallo CM; Lamia KA
    Mol Cell; 2016 Nov; 64(4):774-789. PubMed ID: 27840026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Tau mutation of casein kinase 1ε sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock proteins.
    Maywood ES; Chesham JE; Smyllie NJ; Hastings MH
    J Biol Rhythms; 2014 Apr; 29(2):110-8. PubMed ID: 24682205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light.
    Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H
    J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression.
    Siepka SM; Yoo SH; Park J; Song W; Kumar V; Hu Y; Lee C; Takahashi JS
    Cell; 2007 Jun; 129(5):1011-23. PubMed ID: 17462724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.
    Hirano A; Braas D; Fu YH; Ptáček LJ
    Cell Rep; 2017 Apr; 19(2):255-266. PubMed ID: 28402850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.
    Zhu H; Sauman I; Yuan Q; Casselman A; Emery-Le M; Emery P; Reppert SM
    PLoS Biol; 2008 Jan; 6(1):e4. PubMed ID: 18184036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.